Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records

Abstract

Variations in atmospheric radiocarbon (14C) concentrations can be attributed either to changes in the carbon cycle1—through the rate of radiocarbon removal from the atmosphere—or to variations in the production rate of 14C due to changes in solar activity or the Earth's magnetic field2. The production rates of 10Be and 14C vary in the same way, but whereas atmospheric radiocarbon concentrations are additionally affected by the carbon cycle, 10Be concentrations reflect production rates more directly. A record of the 10Be production-rate variations can therefore be used to separate the two influences—production rates and the carbon cycle—on radiocarbon concentrations. Here we present such an analysis of the large fluctuations in atmospheric 14C concentrations, of unclear origin3, that occurred during the Younger Dryas cold period6. We use the 10Be record from the GISP2 ice core5 to model past production rates of radionuclides, and find that the largest part of the fluctuations in atmospheric radiocarbon concentrations can be attributed to variations in production rate. The residual difference between measured 14C concentrations and those modelled using the 10Be record can be explained with an additional change in the carbon cycle, most probably in the amount of deep-water formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 10Be flux versus δ18O in ice at Summit. δ18O denotes the relative deviation in per mil of the 18O/16O ratio from the 18O/16O value of SMOW (standard mean ocean water).
Figure 2: Comparison of modelled and measured Δ14C from 11,850 to 9,300 yr bp.
Figure 3: Comparison of modelled and measured Δ14C, together with 10Be flux and proxy climate data from 15,000 to 9,300 yr bp.

Similar content being viewed by others

References

  1. Siegenthaler, U., Heimann, M. & Oeschger, H. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22, 177–191 (1980).

    Article  CAS  Google Scholar 

  2. Lal, D. & Peters, B. in Handbuch für Physik (ed. Flügge, S.) 551–612 (Springer, Berlin, 1967).

    Google Scholar 

  3. Goslar, T., Arnold, M., Tisnerat-Laborde, N., Czernik, J. & Wiȩckowski, K. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature 403, 877–880 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Hughen, K. et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, 65–68 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Finkel, R. C. & Nishiizumi, K. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3-40 ka. J. Geophys. Res. 102, 26699–26706 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Goslar, T. et al. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377, 414–417 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Björck, S. et al. Synchronized terrestrial-atmospheric deglacial records around the North Atlantic. Science 274, 1155–1160 (1996).

    Article  ADS  Google Scholar 

  8. Stocker, T. F. & Wright, D. G. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11, 773–795 (1996).

    Article  ADS  Google Scholar 

  9. Marchal, O. et al. Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event. Clim. Dyn. 15, 341–354 (1999).

    Article  Google Scholar 

  10. Stuiver, M. & Polach, H. A. Discussion reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  11. Beer, J. et al. Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331, 675–679 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Masarik, J. & Beer, J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere. J. Geophys. Res. 104, 12099–12111 (1999).

    Article  ADS  CAS  Google Scholar 

  13. McHargue, L. R. & Damon, P. E. The global beryllium-10 cycle. Rev. Geophys. 29, 141–158 (1991).

    Article  ADS  Google Scholar 

  14. Broecker, W. S., Peteet, D. M. & Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Wagner, G. Die kosmogenen Radionuklide 10Be und 36Cl im Summit-GRIP-Eisbohrkern. Thesis, ETH Zürich (1998).

  16. Wagner, G. et al. Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core. Earth Planet. Sci. Lett. 181, 1–6 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Johnsen, S. J., Dansgaard, W. & White, J. W. C. The origin of Arctic precipitation under present and glacial conditions. Tellus B 41, 452–468 (1989).

    Article  ADS  Google Scholar 

  18. Charles, C. D., Rind, D., Jouzel, J., Koster, R. D. & Fairbanks, R. G. Glacial-interglacial changes in moisture sources for Greenland: Influences on the ice core record of climate. Science 263, 508–511 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Siegenthaler, U. Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J. Geophys. Res. 88, 3599–3608 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Stuiver, M. et al. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 1041–1083 (1998).

    Article  CAS  Google Scholar 

  21. Stuiver, M. & Quay, P. D. Changes in atmospheric carbon-14 attributed to a variable sun. Science 207, 11–19 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Björck, S. et al. High-resolution analyses of an early Holocene cooling event may imply solar forcing as an important climate trigger. Geology (submitted).

  23. Alley, R. B. et al. Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application. J. Geophys. Res. 102, 26367–26381 (1997).

    Article  ADS  Google Scholar 

  24. Hughen, K. A., Overpeck, J. T., Peterson, L. C. & Trumbore, S. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–54 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Tauxe, L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys. 31, 319–354 (1993).

    Article  ADS  Google Scholar 

  26. Alley, R. B. et al. Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates. J. Glaciol. 41, 503–514 (1995).

    Article  ADS  Google Scholar 

  27. Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W. & Gundestrup, N. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B 47, 624–629 (1995).

    Article  ADS  Google Scholar 

  28. Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  29. Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. 102, 26397–26410 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. J. Geophys. Res. 102, 26455–26470 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Data were provided by the National Snow and Ice Data Center, University of Colorado at Boulder, and the WDC-A for Paleoclimatology, National Geophysical Data Center, Boulder, Colorado. We thank K. Hughen for the 14C calibration data and the grey scale record of the Cariaco sediments. This work was supported by the Swiss National Science Foundation and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimund Muscheler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscheler, R., Beer, J., Wagner, G. et al. Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records. Nature 408, 567–570 (2000). https://doi.org/10.1038/35046041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046041

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing