Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of repulsion versus adhesion by different splice forms of an Eph receptor

Abstract

Eph tyrosine kinase receptors and their membrane-bound ephrin ligands mediate cell interactions and participate in several developmental processes1,2,3,4. Ligand binding to an Eph receptor results in tyrosine phosphorylation of the kinase domain, and repulsion of axonal growth cones and migrating cells. Here we report that a subpopulation of ephrin-A5 null mice display neural tube defects resembling anencephaly in man. This is caused by the failure of the neural folds to fuse in the dorsal midline, suggesting that ephrin-A5, in addition to its involvement in cell repulsion5,6, can participate in cell adhesion. During neurulation, ephrin-A5 is co-expressed with its cognate receptor EphA7 in cells at the edges of the dorsal neural folds. Three different EphA7 splice variants7,8, a full-length form and two truncated versions lacking kinase domains, are expressed in the neural folds. Co-expression of an endogenously expressed truncated form of EphA7 suppresses tyrosine phosphorylation of the full-length EphA7 receptor and shifts the cellular response from repulsion to adhesion in vitro. We conclude that alternative usage of different splice forms of a tyrosine kinase receptor can mediate cellular adhesion or repulsion during embryonic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural tube defects in ephrin-A5 null mice.
Figure 2: Ephrin-A5 and EphA7 splice versions in cell adhesion and migration.
Figure 3: Regulation of repulsion versus adhesion by different EphA7 splice forms.
Figure 4: EphA7-T1 suppresses tyrosine phosphorylation of EphA7-FL.

Similar content being viewed by others

References

  1. Flanagan, J. G. & Vanderhaegen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  Google Scholar 

  2. Frisén, J., Holmberg, J. & Barbacid, M. Ephrins and their eph receptors: multitalented directors of embryonic development. EMBO J. 18, 5159 –5165 (1999).

    Article  Google Scholar 

  3. Holder, N. & Klein, R. Eph receptors and ephrins: effectors of morphogenesis. Development 126, 2033– 2044 (1999).

    CAS  PubMed  Google Scholar 

  4. O'Leary, D. D. M. & Wilkinson, D. G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9, 65–73 (1999).

    Article  CAS  Google Scholar 

  5. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995).

    Article  CAS  Google Scholar 

  6. Frisén, J. et al. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243 ( 1998).

    Article  Google Scholar 

  7. Ciossek, T., Millauer, B. & Ullrich, A. Identification of alternatively spliced mRNAs encoding variants of MDK1, a novel receptor tyrosine kinase expressed in the murine nervous system. Oncogene, 10, 97– 108 (1995).

    CAS  PubMed  Google Scholar 

  8. Valenzuela, D. M. et al. Identification of full-length and truncated forms of Ehk-3, a novel member of the Eph receptor tyrosine kinase family. Oncogene 10, 1573–1580 ( 1995).

    CAS  PubMed  Google Scholar 

  9. Botto, L. D., Moore, C. A., Khoury, M. J. & Erickson, J. D. Neural-tube defects. N. Engl. J. Med. 341, 1509–1519 (1999).

    Article  CAS  Google Scholar 

  10. Källén, B. et al. International study of sex ratio and twinning of neural tube defects. Teratology 50, 322– 331 (1994).

    Article  Google Scholar 

  11. Fleming, A. & Copp, A. J. Embryonic folate metabolism and mouse neural tube defects. Science 280, 2107–2109 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Pandey, A., Shao, H., Marks, R. M., Polverini, P. J. & Dixit, V. M. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-a-induced angiogenesis. Science 268, 567–569 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Castellani, V., Yue, Y., Gao, P.-P., Zhou, R. & Bolz, J. Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J. Neurosci. 18, 4663–4672 ( 1998).

    Article  CAS  Google Scholar 

  14. Gao, P.-P., Sun, C.-H., Zhou, X.-F., DiCicco-Bloom, E. & Zhou, R. Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. J. Neurosci. Res. 60, 427–436 (2000).

    Article  CAS  Google Scholar 

  15. Davy, A. et al. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13, 3125–3135 ( 1999).

    Article  CAS  Google Scholar 

  16. Orioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 15, 6035–6049 ( 1996).

    Article  CAS  Google Scholar 

  17. van der Geer, P., Hunter, T. & Lindberg, R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10, 251–337 (1994).

    Article  CAS  Google Scholar 

  18. Xu, Q. L., Alldus, G., Holder, N. & Wilkinson, D. G. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish forebrain. Development 121, 4005–4016 ( 1995).

    CAS  PubMed  Google Scholar 

  19. Xu, Q., Alldus, G., Macdonald, R., Wilkinson, D. G. & Holder, N. Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain. Nature 381, 319–322 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Nakamoto, M. et al. Topographically specific effects of Elf-1 on retinal axon guidance in vitro and retinal mapping in vivo. Cell 86, 755–766 (1996).

    Article  CAS  Google Scholar 

  21. Holland, S. J., Peles, E., Pawson, T. & Schlessinger, J. Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr. Opin. Neurobiol. 8, 117–127 ( 1998).

    Article  CAS  Google Scholar 

  22. Zou, J. X. et al. An Eph receptor regulates integrin activity through R-Ras. Proc. Natl Acad. Sci. USA 96, 13813– 13818 (1999).

    Article  ADS  CAS  Google Scholar 

  23. George, S. E., Simokat, K., Hardin, J. & Chisholm, A. D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 92, 633– 643 (1998).

    Article  CAS  Google Scholar 

  24. Song, H. et al. Conversion of neuronal growth cone response from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927– 941 (1999).

    Article  CAS  Google Scholar 

  26. Henrique, D. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Cheng, H.-J. & Flanagan, J. G. Identification and cloning of Elf-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168 (1994).

    Article  CAS  Google Scholar 

  28. Ciossek, T., Ullrich, A., West, E. & Rogers, J. H. Segregation of the receptor EphA7 from its tyrosine kinase-negative isoform on neurons in adult mouse brain. Brain Res. Mol. Brain Res. 74 , 231–236 (1999).

    Article  CAS  Google Scholar 

  29. Wang, H. U. & Anderson, D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383– 396 (1997).

    Article  CAS  Google Scholar 

  30. Wikström, K., Kjellström, G. & Öbrink, B. Homophilic intercellular adhesion mediated by C-CAM is due to a domain 1-domain 1 reciprocal binding. Exp. Cell Res. 227, 360–366 ( 1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Barbacid, J. Ericson, J. Flanagan, U. Lendahl, B. Öbrink, L. Philipson, D. Wilkinson and members of our laboratory for helpful discussions; S. Park for help with vector construction; T. Ciossek for EphA7 cDNAs and antisera; J. Wasserman for assistance with scanning electron miscroscopy; and B. Singer and G. Greicius for help with FACS analysis. This study was supported by grants from the Swedish Foundation for Strategic Research, the Karolinska Institute, the Swedish Medical Research Council, the Swedish Cancer Society, the Swedish Medical Society, Hedlunds stiftelse, Ostermans stiftelse, Magnus Bergvalls stiftelse, Marcus Borgströms stiftelse, Hagbergs stiftelse, Tore Nilssons stiftelse, the Wenner-Gren foundation, Åke Wibergs stiftelse and Kapten Arthur Erikssons fond. D.L.C. was supported by a Wenner-Gren postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Frisén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmberg, J., Clarke, D. & Frisén, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000). https://doi.org/10.1038/35041577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041577

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing