Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical and biological trends during lake evolution in recently deglaciated terrain

Abstract

As newly formed landscapes evolve, physical and biological changes occur that are collectively known as primary succession. Although succession is a fundamental concept in ecology, it is poorly understood in the context of aquatic environments. The prevailing view is that lakes become more enriched in nutrients as they age, leading to increased biological production. Here we report the opposite pattern of lake development, observed from the water chemistry of lakes that formed at various times within the past 10,000 years during glacial retreat at Glacier Bay, Alaska. The lakes have grown more dilute and acidic with time, accumulated dissolved organic carbon and undergone a transient rise in nitrogen concentration, all as a result of successional changes in surrounding vegetation and soils. Similar trends are evident from fossil diatom stratigraphy of lake sediment cores. These results demonstrate a tight hydrologic coupling between terrestrial and aquatic environments during the colonization of newly deglaciated landscapes, and provide a conceptual basis for mechanisms of primary succession in boreal lake ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A chronosequence of lakes in the Glacier Bay region of southeastern Alaska.
Figure 2: Relationship between lake age and mean values of selected water-chemistry variables in the Glacier Bay chronosequence.
Figure 3: Detrended canonical correspondence analysis of modern and fossil diatom assemblages from the chronosequence lakes.
Figure 4: Water chemistry of three Lester Island lakes and their hydrologic sources.
Figure 5: Core trajectories of three hydrologic study lakes on Lester Island.

Similar content being viewed by others

References

  1. Rodhe, W. in Eutrophication: Causes, Consequences, Correctives (ed. Hutchinson, G. E.) 50–64 (National Academy of Sciences, Washington DC, 1969).

    Google Scholar 

  2. Pearsall, W. H. The development of vegetation in the English Lakes, considered in relation to the general evolution of glacial lakes and rock basins. Proc. R. Soc. Lond. B 92, 259–284 (1921).

    Article  ADS  CAS  Google Scholar 

  3. Naumann, E. Grundzüge der regionalen Limnologie. Binnengewässer 11, 1–176 (1932).

    Google Scholar 

  4. Thienemann, A. Tropische Seen und Seetyplehre. Arch. Hydrobiol. 9, 205–231 (1931).

    Google Scholar 

  5. Carpenter, S. J. et al. Nonpoint Pollution of Surface Waters by Phosphorus and Nitrogen (Ecological Society of America, Washington DC, 1998 ).

    Book  Google Scholar 

  6. Whitehead, D. R., Charles, D. F., Jackson, S. T., Smol, J. P. & Engstrom, D. R. The developmental history of Adirondack (N.Y.) lakes. J. Paleolimnol. 2, 185–206 (1989).

    Article  ADS  Google Scholar 

  7. Ford, M. S. A 10,000-yr history of natural ecosystem acidification. Ecol. Monogr. 60, 57–89 ( 1990).

    Article  Google Scholar 

  8. Korhola, A. A. & Tikkanen, M. J. Holocene development and early extreme acidification in a small hilltop lake in southern Finland. Boreas 20, 333–356 ( 1991).

    Article  Google Scholar 

  9. Renberg, I., Korsman, T. & Anderson, N. J. A temporal perspective of lake acidification in Sweden. Ambio 22, 264–271 (1993).

    Google Scholar 

  10. Battarbee, R. W., Charles, D. F., Dixit, S. S. & Renberg, I. in The Diatoms: Applications for the Environmental and Earth Sciences (eds Stoermer, E. F. & Smol, J. P.) 85–127 (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  11. Birks, H. H., Battarbee, R. W. & Birks, H. J. B. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene – a synthesis. J. Paleolimnol. 23, 91– 114 (2000).

    Article  ADS  Google Scholar 

  12. Matthews, J. A. The Ecology of Recently Deglaciated Terrain (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  13. Cooper, W. S. The recent ecological history of Glacier Bay, Alaska: II. The present vegetation cycle. Ecology 4, 223–246 (1923).

    Article  Google Scholar 

  14. Cooper, W. S. A third expedition to Glacier Bay, Alaska. Ecology 12, 61–95 (1931).

    Article  Google Scholar 

  15. Lawrence, D. B. Recent glacier history of Glacier Bay, Alaska and development of vegetation on deglaciated terrain with special reference to the importance of alder in the succession. Yb. Am. Phil. Soc. 1950, 175–176 (1951).

    Google Scholar 

  16. Lawrence, D. B. Glaciers and vegetation in southeastern Alaska. Am. Sci. 46, 89–122 (1958).

    Google Scholar 

  17. Reiners, W. A., Worley, I. A. & Lawrence, D. B. Plant diversity in a chronosequence at Glacier Bay, Alaska. Ecology 52, 55– 69 (1971).

    Article  Google Scholar 

  18. Chapin, F. S., Walker, L. R., Fastie, C. L. & Sharman, L. C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. J. Ecol. 64, 149–175 (1994).

    Google Scholar 

  19. Chapin, F. S., Fastie, C. L., Walker, L. R. & Sharman, L. C. in Proc. Third Glacier Bay Sci. Symp. 1993 (ed. Engstrom, D. R.) 96–100 (National Park Service, Anchorage, 1995).

    Google Scholar 

  20. Fastie, C. L. Causes and ecosystem consequences of multiple successional pathways of primary succession at Glacier Bay, Alaska. Ecology 76, 1899–1916 (1995).

    Article  Google Scholar 

  21. Brower, W. A. Jr, Diaz, H. F., Prechtel, A. S., Searaby, H. W. & Wise, J. L. Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska Vol. 1, Gulf of Alaska (Environmental Information and Data Center, University of Alaska, Anchorage, 1977).

    Google Scholar 

  22. Hunter, L. E. & Powell, R. D. in Proc. Third Glacier Bay Sci. Symp. 1993 (ed. Engstrom, D. R.) 46–54 (National Park Service, Anchorage, 1995).

    Google Scholar 

  23. ter Braak, C. J. F. Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67, 1167 –1179 (1986).

    Article  Google Scholar 

  24. Crocker, R. L. & Major, J. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol. 43, 427–448 ( 1955).

    Article  Google Scholar 

  25. Ugolini, F. C. in Soil Development and Ecological Succession in a Deglaciated Area of Muir Inlet, Southeast Alaska (ed. Mirsky, A.) 29– 72 (Institute of Polar Studies, Ohio State University, Columbus, 1966).

    Google Scholar 

  26. Bormann, B. T. & Sidle, R. C. Changes in productivity and distribution of nutrients in a chronosequence at Glacier Bay National Park, Alaska. J. Ecol. 78, 561– 578 (1990).

    Article  Google Scholar 

  27. Cronan, C. S. & Aiken, G. R. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim. Cosmochim. Acta 49, 1697– 1705 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Engstrom, D. R. Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Can. J. Fish. Aquat. Sci. 44, 1306– 1314 (1987).

    Article  Google Scholar 

  29. Rasmussen, J. B., Godbout, L. & Schallenberg, M. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34, 1336–1343 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Ugolini, F. C. & Mann, D. H. Biopedological origin of peatlands in South East Alaska. Nature 281 , 366–368 (1979).

    Article  ADS  Google Scholar 

  31. Noble, M. G., Lawrence, D. B. & Streveler, G. P. Sphagnum invasion beneath an evergreen forest canopy in southeastern Alaska. Bryologist 87, 119 –127 (1984).

    Article  Google Scholar 

  32. Almendinger, J. E. in Proc. Second Glacier Bay Sci. Symp. (eds Milner, A. M. & Wood, J. D. Jr) 133–135 (National Park Service, Anchorage, Alaska, 1990).

    Google Scholar 

  33. Goldman, C. R. The contribution of alder trees (Alnus tenuifolia) to the primary productivity of Castle Lake, California. Ecology 42, 282–288 (1961).

    Article  Google Scholar 

  34. Brew, D. A. et al. Mineral resources of Glacier Bay National Monument wilderness study area, Alaska. US Geol. Surv. Open-file Rep. 78-494 , 1–659 (1978).

    Google Scholar 

  35. Engstrom, D. R. & Fritz, S. C. in Proc. Second Glacier Bay Sci. Symp. (eds Milner, A. M. & Wood, J. D. Jr) 127–132 (National Park Service, Anchorage, 1990).

    Google Scholar 

  36. McBride, M. S. & Pfannkuch, H. O. The distribution of seepage within lakebeds. US Geol. Survey J. Res. 3, 505–512 (1975).

    Google Scholar 

  37. Olson, O. G. Mechanisms of Long-term change in Periphytic diatom community structure. Thesis, Lehigh Univ. (1998).

    Google Scholar 

  38. Olson, O. G., Engstrom, D. R. & Fritz, S. C. in Proc. Third Glacier Bay Sci. Symp. 1993 (ed. Engstrom, D. R.) 154–163 (National Park Service, Anchorage, 1995).

    Google Scholar 

  39. Williamson, C. E. et al. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology (in the press).

  40. Mann, D. H. & Ugolini, F. C. Holocene glacial history of the Lituya District, southeast Alaska. Can. J. Earth Sci. 22, 913–928 (1985).

    Article  ADS  Google Scholar 

  41. Engstrom, D. R., Hansen, B. C. S. & Wright, H. E. Jr A possible Younger Dryas record in southeastern Alaska. Science 250, 1383– 1385 (1990).

    Article  ADS  CAS  Google Scholar 

  42. Winter, T. C., LaBaugh, J. W. & Rosenberry, D. O. The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water. Limnol. Oceanogr. 33, 1209–1214 (1988).

    Article  ADS  Google Scholar 

  43. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. & terBraak, C. J. F. Diatoms and pH reconstruction. Phil. Trans. R. Soc. Lond. B 327, 263– 278 (1990).

    Article  ADS  Google Scholar 

  44. Juggins, S., Flower, R. J. & Barrarbee, R. W. Palaeolimnological evidence for recent chemical and biological changes in UK Acid Waters Monitoring Network sites. Freshwat. Biol. 36, 203–219 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.A. Coffin, J.A. Janssens, M.G. Noble, G.O. Seltzer, E.B. Swain and H.E. Wright for assistance in the field; Gustavus residents H. Burd, M. Hervin, R. Howe and G. Streveler for their help; and NPS and USGS staff at Glacier Bay National Park for logistical support. This work was supported by the late D.B. Lawrence and by the National Science Foundation Ecology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Engstrom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engstrom, D., Fritz, S., Almendinger, J. et al. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, 161–166 (2000). https://doi.org/10.1038/35041500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing