Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic pathways that regulate ageing in model organisms

Abstract

Searches for genes involved in the ageing process have been made in genetically tractable model organisms such as yeast, the nematode Caenorhabditis elegans , Drosophila melanogaster fruitflies and mice. These genetic studies have established that ageing is indeed regulated by specific genes, and have allowed an analysis of the pathways involved, linking physiology, signal transduction and gene regulation. Intriguing similarities in the phenotypes of many of these mutants indicate that the mutations may also perturb regulatory systems that control ageing in higher organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ageing in budding yeast.
Figure 2: Caloric restriction in yeast.
Figure 3: Regulation of C. elegans ageing by an elaborate endocrine system.

References

  1. Weindruch, R. H., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity, and lifetime energy intake. J. Nutr. 116, 641–654 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Harman, D. The aging process. Proc. Natl Acad. Sci. USA 78, 7124–7128 (1981).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finch, C. Longevity, senescence, and the genome (Univ. Chicago Press, Chicago, IL, 1990).

    Google Scholar 

  4. Mortimer, R. K. & Johnston, J. R. Life span of individual yeast cells. Nature 183, 1751 –1752 (1959).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Egilmez, N. K. & Jazwinski, S. M. Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae . J Bacteriol. 171, 37– 42 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jazwinski, S. M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91, 35–53 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  7. Smeal, T., Claus, J., Kennedy, B., Cole, F. & Guarente, L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84, 633–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae . Genetics 116, 9–22 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751– 762 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy, B. K., Austriaco, N. R. Jr, Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–486 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, J. S. & Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11, 241–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255– 269 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, S., Benguria, A., Lai, C.-Y. & Jazwinski, M. Modulation of life span by histone deacetylase genes in S. cerevisiae. Mol. Biol. Cell 10, 3125–3136 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, J. S., Caputo, E. & Boeke, J. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin remodeling factors. Mol. Cell. Biol. 19, 3184–3197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771–776 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  17. Sinclair, D. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91, 1033– 1042 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Defossez, P. A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3, 447–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Heo, S. T., K., Ohsugi, I., Shimamoto, A., Furiuchi, Y. & Ikeda, I. Blooms syndrome gene suppresses premature aging causes by Sgs1 deficiency in yeast. Genes Cells 4, 619–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ashrafi, K., Sinclair, D., Gordon, J. & Guarente, L. Passage through stationary phase advances replicative aging in S. cerevisiae. Proc. Natl Acad. Sci. USA 96, 9100– 9105 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sinclair, D., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313– 1316 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Celenza, J. L. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233, 1175– 1180 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ashrafi, K., Lin, S., Manchester, J. & Gordon, J. Sip2p and its partner Snf1p kinase affect aging in S. cerevisiae. Genes Dev. 14, 1872–1885 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brachmann, C. B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Frye, R. A. Characterization of five human cDNAs with homology to yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast SIR2 protein that is essential for gene silencing. Cell 99, 735 –745 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Imai, S. I., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein SIR2 is an NAD-dependent histone deacetylase. Nature 403, 795– 799 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Smith, J. S. et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl Acad. Sci. USA 97, 6658–6663 ( 2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, S., Defossez, P. & Guarente, L. Life span extension by calorie restriction in S. cerevisiae requires NAD and SIR2. Science 289, 2126–2128 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Chen, J. B., Sun, J. & Jazwinski, S. M. Prolongation of the yeast life span by the v-Ha-Ras oncogene. Mol. Microbiol. 4, 2081– 2086 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kirchman, P. A., Sangkyu, K., Lai, C. Y. & Jazwinski, S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152, 179–190 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parikh, V. S., Morgan, M., Scott, R., Clements, S. & Butow, R. A. The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235, 576 –580 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Guarente, L. Do changes in chromosomes cause aging? Cell 86, 9–12 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Wareham, K. A., Lyon, M. F., Glenister, P. H. & Williams, E. D. Age related reactivation of an X-linked gene. Nature 327, 725–727 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461– 464 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Larsen, P. L., Albert, P. S. & Riddle, D. L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morris, J. Z., Tissenbaum, H. A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488 –2498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paradis, S., Ailion, M., Toker, A., Thomas, J. H. & Ruvkun, G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans . Genes Dev. 13, 1438– 1452 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogg, S. & Ruvkun, G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 2, 887–893 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  45. Gil, E. B., Link, E. M., Liu, L. X., Johnson, C. D. & Lees J. A. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc. Natl Acad. Sci. USA 96, 2925 –2930 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rouault, J. P. et al. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr. Biol. 9, 329–332 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  47. Mihaylova, V. T., Borland, C. Z., Manjarrez, L., Stern, M. J. & Sun, H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc. Natl Acad. Sci. USA 96, 7427–7432 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Friedman, D. B. & Johnson, T. E. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol. 43, 102–109 (1988).

    Article  Google Scholar 

  49. Dorman, J. B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawano, T. et al. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Comm. 273, 431–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans . Genetics 150, 129– 155 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Nakae, J., Park, B. & Accili, D. Insulin stimulates phosphorylation of the Forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J. Biol. Chem. 274, 15982–15985 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Rena, G., Guo, S., Cichy, S. C., Unterman, T. G. & Cohen, P. Phosphorylation of the transcription factor Forkhead family member FKHR by protein kinase B. J. Biol. Chem. 274, 17179–17183 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630– 634 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Biggs, W. H. III, Meisenhelder, J., Hunter, T., Cavenee, W. K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl Acad. Sci. USA 96, 7421–7460 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Riddle, D. L. & Albert, P. S. in C. elegans Vol. II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 739–768 (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  60. Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148, 703– 717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vanfleteren, J. R. & De Vreese, A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J. 9, 1355–1361 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Van Voorhies, W. A. & Ward, S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc. Natl Acad. Sci. USA 96, 11399–11403 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gottlieb, S. & Ruvkun, G. daf-2, daf-16 and daf-23: genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics 137, 107–120 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vowels, J. J. & Thomas, J. H. Genetic analysis of chemosensory control of dauer formation in C. elegans. Genetics 130, 105–123 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Apfeld, J. & Kenyon, C. Cell nonautonomy of C. elegans DAF-2 function in the regulation of diapause and life span. Cell 95, 199–210 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  66. Larsen, P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 8905– 8909 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lithgow, G. J., White, T. M., Melov, S. & Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA 92, 7540 –7544 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murakami, S. & Johnson, T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207–1218 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Ailion, M., Inoue, T., Weaver, C. I., Holdcraft, R. W. & Thomas, J. H. Neurosecretory control of aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 96, 7394–7397 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Antebi, A., Yeh, W., Tait,, D., Hedgecock, E. M. & Riddle, D. L. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 14, 1512–1527 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sgro, C. M. & Partridge, L. A delayed wave of death from reproduction in Drosophila. Science 286, 2521– 2524 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, Y. J., Seroude, L. & Benzer, S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282 , 943–946 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Arking, R., Buck, S., Berrios, A., Dwyer, S. & Baker, G. T. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev. Genet. 12, 362–370 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Service, P. M., Hutchinson, E. W., MacKinley, M. D. & Rose, M. R. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 58, 380–389 (1985).

    Article  Google Scholar 

  77. Sohal, R. S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59– 63 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402 , 309–313 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Taub, J. et al. A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-2 and clk-1 mutants. Nature 399, 162–166 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Ishii, N. et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394 , 694–697 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Melov, S. et al. Extension of life-span with superoxide dismutase/catalase mimetics . Science 289, 1567–1569 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Sun, J. & Tower, J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19, 216–228 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parkes, T. L. et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet. 19, 171–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Branicky, R., Benard, C. & Hekimi S. clk-1, mitochondria, and physiological rates. BioEssays 22, 48–56 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  86. Klass, M. R. Aging in the nematode C. elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    Article  CAS  PubMed  Google Scholar 

  87. Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murakami, S. & Johnson, T. E. Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr. Biol. 9, 791–795 ( 1998).

    Article  Google Scholar 

  90. Wu, W. et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency . Nature Genet. 18, 147– 149 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the aging process. Nature 384, 33 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Bartke, A. et al. Does growth hormone prevent or accelerate aging? Exp. Gerontol. 33, 675–687 (1998)

    Article  CAS  PubMed  Google Scholar 

  93. Kopchick, J. J. & Laron, Z. Is the Laron mouse an accurate model of Laron syndrome? Molec. Gen. Metab. 68, 232–236 (1999)

    Article  CAS  Google Scholar 

  94. Hunter, W. S., Croson, W. B., Bartke, A., Gentry, M. V. & Meliska, C. J. Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol. Behav. 67, 433–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Brown-Borg, H. M. & Rakoczya, S. G. Catalase expression in delayed and premature aging mouse models. Exp. Geron. 35, 199–212 (1999).

    Article  Google Scholar 

  96. Hauck, S. J. & Bartke, A. Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase. Free Radical Biol. Med. 28, 970–978 ( 2000).

    Article  CAS  Google Scholar 

  97. Wolkow, C. A., Kimura, K. D., Lee, M.-S. & Ruvkun, G. Regulation of C. elegans life-span by insulin like signaling in the nervous system. Science 290, 147– 150 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Note added in proof. Recently, Wolkow et al.97 have shown that expression of the C. elegans daf-2 receptor or age-1 PI(3)K only in neurons can confer normal life span, and that expression of daf-2 only in endoderm has a significant, but lesser, effect. These findings are in accord with previous mosaic analysis65. An important caveat is that the levels of DAF-2 and AGE-1 produced in these transgenic animals may differ from endogenous levels, possibly altering the level of downstream signal. Wolkow et al. also demonstrate that expressing daf-2 or age-1 only in neurons can be sufficient for normal fat metabolism in the intestine. This is consistent with earlier findings that daf-2 activity in the ectoderm can be necessary and sufficient for normal intestinal pigmentation65, although it should be noted that genetic mosaic animals with a nervous system that is almost completely wild type but internal tissues that are daf-2 often have a Daf-2 intestinal phenotype. Finally, the new study reported that the altered intestinal metabolism of insulin/IGF-1 pathway mutants is not required for longevity, as had been shown previously by analysing intestinal pigmentation and life span in genetic mosaics65 (see text).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarente, L., Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262 (2000). https://doi.org/10.1038/35041700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041700

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing