Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups

Abstract

So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox centres—chemical species whose oxidation number, and hence electronic structure, can be changed reversibly—support resonant tunnelling1,2 and display promising functional behaviour when sandwiched as molecular layers between electrical contacts3,4, but their integration into more complex assemblies remains challenging. For this reason, functionalized metal nanoparticles have attracted much interest5,6,7: they exhibit single-electron characteristics8,9,10 (such as quantized capacitance charging) and can be organized11,12,13 through simple self-assembly methods into well ordered structures, with the nanoparticles at controlled locations. Here we report scanning tunnelling microscopy measurements showing that organic molecules containing redox centres can be used to attach metal nanoparticles to electrode surfaces and so control the electron transport between them. Our system consists of gold nanoclusters a few nanometres across and functionalized with polymethylene chains that carry a central, reversibly reducible bipyridinium moiety14,15. We expect that the ability to electronically contact metal nanoparticles via redox-active molecules, and to alter profoundly their tunnelling properties by charge injection into these molecules, can form the basis for a range of nanoscale electronic switches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the nanoscopic device.
Figure 2: An STM image of a low coverage of gold nanoparticles deposited on top of a self-assembled monolayer of the redox gate molecule shown in Fig. 1.
Figure 3: A current–voltage curve (inset) and its derivative (dI/d Vbias) obtained for the surface shown in Fig. 2, immersed in mesitylene.
Figure 4: A schematic illustration of the operation of a nanoscopic electronic switch illustrated in Fig. 1.

Similar content being viewed by others

References

  1. Tao, N. J. Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Lett. 76, 4066–4069 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Han, W. H. et al. STM contrast, electron-transfer chemistry, and conduction in molecules. J. Phys. Chem. B 101, 10719– 10725 (1997).

    Article  CAS  Google Scholar 

  3. Feldheim, D. L. & Keating, C. D. Self-assembly of single electron transistors and related devices. Chem. Soc. Rev. 27, 1–12 ( 1998).

    Article  CAS  Google Scholar 

  4. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550– 1552 (1999).

    Article  CAS  Google Scholar 

  5. Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E. & Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277, 1978–1981 ( 1997).

    Article  CAS  Google Scholar 

  7. Oosterkamp, T. H. et al. Microwave spectroscopy of a quantum-dot molecule. Nature 395, 873–876 ( 1998).

    Article  ADS  CAS  Google Scholar 

  8. Chen, S. W. & Murray, R. W. Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. J. Phys. Chem. B 103, 9996–10000 ( 1999).

    Article  CAS  Google Scholar 

  9. Ingram, R. S. et al. 28 kDa alkanethiolate protected Au clusters give analogous solution electrochemistry and STM coloumb staircases. J. Am. Chem. Soc. 119, 9279–9280 ( 1997).

    Article  CAS  Google Scholar 

  10. Andres, R. P. et al. “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272, 1323 –1325 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444– 446 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Schmid, G. Clusters and Colloids (VCH, Weinheim, 1994).

    Book  Google Scholar 

  13. Templeton, A. C., Wuelfing, M. P. & Murray, R. W. Monolayer protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000).

    Article  CAS  Google Scholar 

  14. Gittins, D. I., Bethell, D., Nichols, R. J. & Schiffrin, D. J. Diode-like electron transfer across nanostructured films containing a redox ligand. J. Mater. Chem. 10, 79– 83 (2000).

    Article  CAS  Google Scholar 

  15. Gittins, D. I., Bethell, D., Nichols, R. J. & Schiffrin, D. J. Redox-connected multilayers of discrete gold particles: A novel electroactive nanomaterial. Adv. Mater. 11, 737– 740 (1999).

    Article  CAS  Google Scholar 

  16. Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  17. Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparency of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Yazdani, A., Eigler, D. M. & Lang, N. D. Off-resonance conduction through atomic wires. Science 272, 1921–1924 ( 1996).

    Article  ADS  CAS  Google Scholar 

  19. Friis, E. P. et al. An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution. Proc. Natl Acad. Sci. USA 96, 1379– 1384 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Vaught, A., Jing, T. W. & Lindsay, S. M. Non-exponential tunneling in water near an electrode. Chem. Phys. Lett. 236, 306– 310 (1995).

    Article  ADS  CAS  Google Scholar 

  21. DeLong, H. C. & Buttry, D. A. Environmental effects on redox potentials of viologen groups embedded in an electroactive SAM. Langmuir 8, 2491–2496 ( 1992).

    Article  CAS  Google Scholar 

  22. Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Novel gold-dithiol nano-networks with nonmetallic electronic properties. Adv. Mater. 7, 795–797 ( 1995).

    Article  CAS  Google Scholar 

  23. Bethell, D., Brust, M., Schiffrin, D. J. & Kiely, C. From monolayers to nanostructured materials - an organic chemist's view of self-assembly. J. Electroanal. Chem. 409, 137–143 (1996).

    Article  Google Scholar 

  24. Ulman, A. An Introduction to Ultrathin Organic Films (Academic, San Diego, 1991).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the UK EPSRC Scanning Probe Microscopy initiative. D.I.G thanks EPRSC for the award of a quota studentship. D.B. thanks the Leverhume Trust for the award of an Emeratus Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Nichols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gittins, D., Bethell, D., Schiffrin, D. et al. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408, 67–69 (2000). https://doi.org/10.1038/35040518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040518

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing