Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regenerating the damaged central nervous system

Abstract

It is self-evident that the adult mammalian brain and spinal cord do not regenerate after injury, but recent discoveries have forced a reconsideration of this accepted principle. Advances in our understanding of how the brain develops have provided a rough blueprint for how we may bring about regeneration in the damaged brain. Studies in developmental neurobiology, intracellular signalling and neuroimmunology are bringing the regeneration field closer to success. Notwithstanding these advances, clear and indisputable evidence for adult functional regeneration remains to be shown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps to functional regeneration.
Figure 2: Intracellular mediators of axon growth.

Similar content being viewed by others

References

  1. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Hafner, New York, 1928).

    Google Scholar 

  2. Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Axons from CNS neurones regenerate into PNS grafts. Nature 284, 264–265 (1980).

    ADS  CAS  PubMed  Google Scholar 

  3. Kordower, J. H. & Tuszynski, M. H. CNS Regeneration: Basic Science and Clinical Advances (eds Kordower, J. H. & Tuszynski, M. H.) 159–182 (Academic, San Diego, 1999).

    Google Scholar 

  4. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    ADS  CAS  PubMed  Google Scholar 

  5. Flax, J. D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nature Biotechnol. 16, 1033–1438 ( 1998).

    CAS  Google Scholar 

  6. Gage, F. H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl Acad. Sci. USA 92, 11879–11883 ( 1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, Y. et al. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp. Neurol. 158, 9–26 (1999).

    CAS  PubMed  Google Scholar 

  8. Gaiano, N. & Fishell, G. Transplantation as a tool to study progenitors within the vertebrate nervous system. J. Neurobiol. 36, 152–161 ( 1998).

    CAS  PubMed  Google Scholar 

  9. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C. & Vescovi, A. L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537 (1999).

    ADS  CAS  PubMed  Google Scholar 

  10. Snyder, E. Y., Yoon, C., Flax, J. D. & Macklis, J. D. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl Acad. Sci. USA 94, 11663–11668 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. McDonald, J. W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med. 5, 1410–1412 (1999).

    CAS  PubMed  Google Scholar 

  12. Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754 –756 (1999).

    CAS  PubMed  Google Scholar 

  13. Ono, K. et al. Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem. Biophys. Res. Commun. 262, 610– 614 (1999).

    CAS  PubMed  Google Scholar 

  14. Bartlett, P. F. Pluripotential hemopoietic stem cells in adult mouse brain. Proc. Natl Acad. Sci. USA 79, 2722–2725 (1982).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kornack, D. R. & Rakic, P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl Acad. Sci. USA 96, 5768–5773 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317 ( 1998).

    CAS  PubMed  Google Scholar 

  17. Horner, P. J. et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gould, E. & Tanapat, P. Stress and hippocampal neurogenesis. Biol. Psychiatry 46, 1472– 1479 (1999).

    CAS  PubMed  Google Scholar 

  19. Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493– 495 (1997).

    ADS  CAS  PubMed  Google Scholar 

  20. van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci. 2, 266–270 (1999).

    CAS  PubMed  Google Scholar 

  21. McTigue, D. M., Horner, P. J., Stokes, B. T. & Gage, F. H. Neurotrophin-3 and brain derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused rat spinal cord. J. Neurosci. 18, 5354– 5365 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Franklin, R. J., Gilson, J. M. & Blakemore, W. F. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J. Neurosci. Res. 50, 337–344 ( 1997).

    CAS  PubMed  Google Scholar 

  23. Gensert, J. M. & Goldman, J. E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 ( 1997).

    CAS  PubMed  Google Scholar 

  24. Magavi, S. S., Leavitt, B. R. & Mackliss, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    ADS  CAS  PubMed  Google Scholar 

  25. Stichel, C. C. & Muller, H. W. Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Prog. Neurobiol. 56, 119– 148 (1998).

    CAS  PubMed  Google Scholar 

  26. Cheng, H., Cao, Y. & Olson, L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273, 510– 513 (1996).

    ADS  CAS  PubMed  Google Scholar 

  27. Xu, X. M., Guenard, V., Kleitman, N., Aebischer, P. & Bunge, M. B. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp. Neurol. 134, 261–272 (1995).

    CAS  PubMed  Google Scholar 

  28. Menei, P., Montero-Menei, C., Whittemore, S. R., Bunge, R. P. & Bunge, M. B. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur. J. Neurosci. 10, 607 –621 (1998).

    CAS  PubMed  Google Scholar 

  29. Grill, R., Murai, K., Blesch, A., Gage, F. H. & Tuszynski, M. H. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y. et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J. Neurosci. 19, 4370– 4387 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jakeman, L. B., Wei, P., Guan, Z. & Stokes, B. T. Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury. Exp. Neurol. 154, 170–184 (1998).

    CAS  PubMed  Google Scholar 

  32. Houweling, D. A., Lankhorst, A. J., Gispen, W. H., Bar, P. R. & Joosten, E. A. Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp. Neurol. 153, 49–59 (1998).

    CAS  PubMed  Google Scholar 

  33. Ribotta, M. G. et al. Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level. J. Neurosci. 20, 5144– 5152 (2000).

    CAS  PubMed  Google Scholar 

  34. Ramer, M. S., Priestley, J. V. & McMahon, S. B. Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312– 316 (2000).

    ADS  CAS  PubMed  Google Scholar 

  35. Bahr, M. Target-specific guidance cues for regenerating axons are reexpressed in the lesioned adult mammalian central nervous system. Adv. Neurol. 73, 83–90 (1997).

    CAS  PubMed  Google Scholar 

  36. Aubert, I., Ridet, J. L., Schachner, M., Rougon, G. & Gage, F. H. Expression of L1 and PSA during sprouting and regeneration in the adult hippocampal formation. J. Comp. Neurol. 399, 1–19 (1998).

    CAS  PubMed  Google Scholar 

  37. Weidner, N., Blesch, A., Grill, R. J. & Tuszynski, M. H. Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. J. Comp. Neurol. 413, 495–506 ( 1999).

    CAS  PubMed  Google Scholar 

  38. Caroni, P. & Schwab, M. E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106, 1281–1288 (1988).

    CAS  PubMed  Google Scholar 

  39. Caroni, P., Savio, T. & Schwab, M. E. Central nervous system regeneration: oligodendrocytes and myelin as non-permissive substrates for neurite growth. Prog. Brain Res. 78, 363–370 ( 1988).

    CAS  PubMed  Google Scholar 

  40. Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    ADS  CAS  PubMed  Google Scholar 

  41. Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).

    CAS  PubMed  Google Scholar 

  42. Fitch, M. T. & Silver, J. Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell Tissue Res. 290, 379–384 (1997).

    CAS  PubMed  Google Scholar 

  43. Bernhardt, R. R. Cellular and molecular basis of axonal regeneration in the fish central nervous system. Exp. Neurol. 157, 223– 240 (1999).

    CAS  PubMed  Google Scholar 

  44. Goodman, C. S. Mechanisms and molecules that control growth cone guidance. Annu. Rev. Neurosci. 19, 341–377 (1996).

    CAS  PubMed  Google Scholar 

  45. Tessier-Lavigne, M. Eph receptor tyrosine kinases, axon repulsion, and the development of topographic maps. Cell 82, 345–348 (1995).

    CAS  PubMed  Google Scholar 

  46. Pasterkamp, R. J. et al. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol. Cell Neurosci. 13, 143–166 (1999).

    CAS  PubMed  Google Scholar 

  47. Jaworski, D. M., Kelly, G. M. & Hockfield, S. Intracranial injury acutely induces the expression of the secreted isoform of the CNS-specific hyaluronan-binding protein BEHAB/brevican. Exp. Neurol. 157, 327– 337 (1999).

    CAS  PubMed  Google Scholar 

  48. Haas, C. A., Rauch, U., Thon, N., Merten, T. & Deller, T. Entorhinal cortex lesion in adult rats induces the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes. J. Neurosci. 19, 9953– 9963 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lemons, M. L., Howland, D. R. & Anderson, D. K. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp. Neurol. 160, 51–65 ( 1999).

    CAS  PubMed  Google Scholar 

  50. Fidler, P. S. et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19, 8778–8788 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fitch, M. T. & Silver, J. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp. Neurol. 148, 587– 603 (1997).

    CAS  PubMed  Google Scholar 

  52. Roitbak, T. & Sykova, E. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 28, 40–48 (1999).

    CAS  PubMed  Google Scholar 

  53. Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A. & Muir, D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 154, 654–662 ( 1998).

    CAS  PubMed  Google Scholar 

  54. Bush, T. G. et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23, 297–308 (1999).

    CAS  PubMed  Google Scholar 

  55. Stichel, C. C. et al. Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur. J. Neurosci. 11, 632–646 (1999).

    CAS  PubMed  Google Scholar 

  56. Thallmair, M. et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nature Neurosci. 1, 124–131 ( 1998).

    CAS  PubMed  Google Scholar 

  57. Keirstead, H. S., Morgan, S. V., Wilby, M. J. & Fawcett, J. W. Enhanced axonal regeneration following combined demyelination plus schwann cell transplantation therapy in the injured adult spinal cord. Exp. Neurol. 159, 225–236 (1999).

    CAS  PubMed  Google Scholar 

  58. Huang, D. W., McKerracher, L., Braun, P. E. & David, S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639– 647 (1999).

    CAS  PubMed  Google Scholar 

  59. Davies, S. J. et al. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680– 683 (1997).

    ADS  CAS  PubMed  Google Scholar 

  60. Pettigrew, D. B. & Crutcher, K. A. White matter of the CNS supports or inhibits neurite outgrowth in vitro depending on geometry. J. Neurosci. 19, 8358– 8366 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bredesen, D. E. Neural apoptosis. Ann. Neurol. 38, 839– 851 (1995).

    CAS  PubMed  Google Scholar 

  62. Harvey, N. L. & Kumar, S. The role of caspases in apoptosis. Adv. Biochem. Eng Biotechnol. 62, 107– 128 (1998).

    CAS  PubMed  Google Scholar 

  63. Blomer, U., Kafri, T., Randolph-Moore, L., Verma, I. M. & Gage, F. H. Bcl-xL protects adult septal cholinergic neurons from axotomized cell death. Proc. Natl Acad. Sci. USA 95, 2603–2608 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bisby, M. A. & Tetzlaff, W. Changes in cytoskeletal protein synthesis following axon injury and during axon regeneration. Mol. Neurobiol. 6, 107–123 (1992).

    CAS  PubMed  Google Scholar 

  65. Skene, J. H. Axonal growth-associated proteins. Annu. Rev. Neurosci. 12, 127–156 (1989).

    CAS  PubMed  Google Scholar 

  66. Benowitz, L. I. & Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91 (1997).

    CAS  PubMed  Google Scholar 

  67. Hopker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    ADS  CAS  PubMed  Google Scholar 

  68. Davies, A. M. The Bcl-2 family of proteins, and the regulation of neuronal survival. Trends Neurosci. 18, 355–358 (1995).

    CAS  PubMed  Google Scholar 

  69. Chen, D. F., Schneider, G. E., Martinou, J. C. & Tonegawa, S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 385, 434–439 ( 1997).

    ADS  CAS  PubMed  Google Scholar 

  70. Gomez, T. M. & Spitzer, N. C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355 (1999).

    ADS  CAS  PubMed  Google Scholar 

  71. Qiu, J., Cai, D. & Filbin, M. T. Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia 29, 166–174 (2000).

    CAS  PubMed  Google Scholar 

  72. Song, H. J., Ming, G. L. & Poo, M. M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275– 279 (1997).

    ADS  CAS  PubMed  Google Scholar 

  73. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic neuclotides. Science 281, 1515–1518 (1998).

    ADS  CAS  PubMed  Google Scholar 

  74. Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M. T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 ( 1999).

    CAS  PubMed  Google Scholar 

  75. Tuszynski, M. H. et al. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp. Neurol. 137, 157– 173 (1996).

    CAS  PubMed  Google Scholar 

  76. Sitchel, C. C., Hermanns, S., Lausberg, F. & Muller, H. W. Effects of schwann cell suspension grafts on axon regeneration in subacute and chronic CNS traumatic injuries. Glia 28, 156–165 (1999).

    Google Scholar 

  77. Kawaja, M. D. & Gage, F. H. Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor. Neuron 7, 1019– 1030 (1991).

    CAS  PubMed  Google Scholar 

  78. Li, Y., Field, P. M. & Raisman, G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277, 2000–2002 (1997).

    CAS  PubMed  Google Scholar 

  79. Ramon-Cueto, A., Plant, G. W., Avila, J. & Bunge, M. B. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. 18, 3803–3815 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ramon-Cueto, A., Cordero, M. I., Santos-Benito, F. F. & Avila, J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435 (2000).

    CAS  PubMed  Google Scholar 

  81. Xu, X. M., Zhang, S. X., Li, H., Aebischer, P. & Bunge, M. B. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mino-channel implanted into hemisected adult rat spinal cord. Eur. J. Neurosci. 11, 1723– 1740 (1999).

    CAS  PubMed  Google Scholar 

  82. Gautier, S. E. et al. Poly(alpha-hydroxyacids) for application in the spinal cord: resorbability and biocompatibility with adult rat Schwann cells and spinal cord. J. Biomed. Mater. Res. 42, 642– 654 (1998).

    CAS  PubMed  Google Scholar 

  83. Houle, J. D. & Ye, J. H. Survival of chronically-injured neurons can be prolonged by treatment with neurotropic factors. Neuroscience 94, 929–936 ( 1999).

    CAS  PubMed  Google Scholar 

  84. Matyszak, M. K. Inflammation in the CNS: balance between immunological privilege and immune responses. Prog. Neurobiol. 56, 19– 35 (1998).

    CAS  PubMed  Google Scholar 

  85. Brewer, K. L., Bethea, J. R. & Yezierski, R. P. Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp. Neurol. 159, 484–493 (1999).

    CAS  PubMed  Google Scholar 

  86. Logan, A., Green, J., Hunter, A., Jackson, R. & Berry, M. Inhibition of glial scarring in the injured rat brain by a recombinant human monoclonal antibody to transforming growth factor-β2. Eur. J. Neurosci. 11, 2367– 2374 (1999).

    CAS  PubMed  Google Scholar 

  87. DiProspero, N. A., Meiners, S. & Geller, H. M. Inflammatory cytokines interact to modulate extracellular matrix and astrocytic support of neurite outgrowth. Exp. Neurol. 148, 628–639 ( 1997).

    CAS  PubMed  Google Scholar 

  88. Blinzinger, K. & Kreutzberg, G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch. Mikrosk. Anat. 85, 145– 157 (1968).

    CAS  PubMed  Google Scholar 

  89. Streit, W. J. et al. Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp. Neurol. 152, 74–87 (1998).

    CAS  PubMed  Google Scholar 

  90. Popovich, P. G. et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158, 351– 365 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Brandon, S. Colamarino, M.-C. Senut, L. Shihabuddin, H. van Praag, B. Benish and L. Horky for providing input during the preparation of this review. We appreciate the editorial assistance of M. L. Gage and the assistance of E. Grabowski in the preparation of illustrations. We are grateful for the continued support of The Christopher Reeve Paralysis Foundation, The Lookout Fund, The Parkinson's Disease Foundation and the National Institutes of Health. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred H. Gage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horner, P., Gage, F. Regenerating the damaged central nervous system. Nature 407, 963–970 (2000). https://doi.org/10.1038/35039559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039559

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing