Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin

Abstract

Fibroblast growth factors (FGFs) are a large family of structurally related proteins with a wide range of physiological and pathological activities1. Signal transduction requires association of FGF with its receptor tyrosine kinase (FGFR)2 and heparan sulphate proteoglycan in a specific complex on the cell surface. Direct involvement of the heparan sulphate glycosaminoglycan polysaccharide in the molecular association between FGF and its receptor is essential for biological activity3,4,5. Although crystal structures of binary complexes of FGF–heparin6,7 and FGF–FGFR8,9 have been described, the molecular architecture of the FGF signalling complex has not been elucidated. Here we report the crystal structure of the FGFR2 ectodomain in a dimeric form that is induced by simultaneous binding to FGF1 and a heparin decasaccharide. The complex is assembled around a central heparin molecule linking two FGF1 ligands into a dimer that bridges between two receptor chains. The asymmetric heparin binding involves contacts with both FGF1 molecules but only one receptor chain. The structure of the FGF1–FGFR2–heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The FGF1–FGFR2–heparin complex.
Figure 2: Heparin–protein interactions in the FGF1–FGFR2–heparin complex.
Figure 3: Overall architecture of the FGF1–FGFR2–heparin complex.
Figure 4: Ligand–receptor interactions in FGF–FGFR complexes with and without heparin.
Figure 5: Higher order FGFR oligomerization as observed in crystals of the FGF1–FGFR2–heparin complex.

Similar content being viewed by others

References

  1. Galzie, Z., Kinsella, A. R. & Smith, J. A. Fibroblast growth factors and their receptors. Biochem. Cell. Biol. 75, 669–685 (1997).

    Article  CAS  Google Scholar 

  2. Johnson, D. E. & Williams, L. T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41 (1993).

    CAS  PubMed  Google Scholar 

  3. Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708 (1991).

    Article  CAS  ADS  Google Scholar 

  4. Spivak-Kroizman, T. et al. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation and cell proliferation. Cell 79, 1015–1024 ( 1994).

    Article  CAS  Google Scholar 

  5. Lin, X., Buff, E. M., Perrimon, N. & Michelson, A. M. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126 , 3715–3723 (1999).

    CAS  PubMed  Google Scholar 

  6. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J. & Rees, D. C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120 (1996).

    Article  CAS  ADS  Google Scholar 

  7. DiGabriele, A. et al. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 393, 812 –817 (1998).

    Article  CAS  ADS  Google Scholar 

  8. Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. & Mohammadi, M. Structural basis for FGF receptor dimerization and activation. Cell 98, 641–650 ( 1999).

    Article  CAS  Google Scholar 

  9. Stauber, D., DiGabriele, A. & Hendrickson, W. Structural Interactions of fibroblast growth factor receptor with its ligands. Proc. Natl Acad. Sci. USA 97, 49–54 (2000).

    Article  CAS  ADS  Google Scholar 

  10. Zhu, X. et al. Three-dimensional structure of acidic and basic fibroblast growth factor. Science 251, 90– 93 (1991).

    Article  CAS  ADS  Google Scholar 

  11. Thompson, L. D., Pantoliano, M. W. & Springer, B. A. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry 33, 3831– 3840 (1994).

    Article  CAS  Google Scholar 

  12. Springer, B. A. et al. Identification and concerted function of two receptor binding surfaces on basic fibroblast growth factor required for mitogenesis. J. Biol. Chem. 269, 26879–26884 (1994).

    CAS  PubMed  Google Scholar 

  13. Kan, M. et al. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 259, 1918– 1921 (1993).

    Article  CAS  ADS  Google Scholar 

  14. Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U. & Rapraeger, A. C. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268, 23906– 23914 (1993).

    CAS  PubMed  Google Scholar 

  15. Ornitz, D. M. et al. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol. 12, 240–247 (1992).

    Article  CAS  Google Scholar 

  16. Sudhalter, J., Folkman, J., Svahn, C. M., Bergendal, K. & D'Amore, P. A. Importance of size, sulfation, and anticoagulant activity in the potentiation of acidic fibroblast growth factor by heparin. J. Biol. Chem. 264, 6892 –6897 (1989).

    PubMed  Google Scholar 

  17. Wang, F., Kan, M., Xu, J., Yan, G. & McKeehan, W. L. Ligand-specific structural domains in the fibrobast growth factor receptor. J. Biol. Chem. 270, 10222–10230 (1995).

    Article  CAS  Google Scholar 

  18. Zhu, H. et al. Analysis of high-affinity binding determinants in the receptor binding epitope of basic fibroblast growth factor. Protein Eng. 10, 417–421 (1997).

    Article  CAS  Google Scholar 

  19. Zhu, H. et al. Glu-96 of basic fibroblast growth factor is essential for high affinity receptor binding. Identification by structure-based site-directed mutagenesis. J. Biol. Chem. 270, 21869– 21874 (1995).

    Article  CAS  Google Scholar 

  20. Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K. & Ingber, D. E. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell 6, 1349–1365 (1995).

    Article  CAS  Google Scholar 

  21. Oldridge, M. et al. Genotype-phenotype correlation for nucleotide substitutions in the IgII–IgIII linker of FGFR2. Hum. Mol. Genet. 6, 137–143 (1997).

    Article  CAS  Google Scholar 

  22. Reimer, U. et al. Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J. Mol. Biol. 279, 449– 460 (1998).

    Article  CAS  Google Scholar 

  23. Rice, K. G., Kim, Y. S., Grant, A. C., Merchant, Z. M. & Linhardt, R. J. High-performance liquid chromatographic separation of heparin-derived oligosaccharides. Anal. Biochem. 150, 325–331 (1985).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  25. Sheldrick, G. M. & Schneider, T. R. SHELXL: high resolution refinement. Methods Enzymol. 277, 319–343 (1997).

    Article  CAS  Google Scholar 

  26. La Fortelle, E. d. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494 ( 1997).

    Article  Google Scholar 

  27. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  28. Mulloy, B., Forster, M. J., Jones, C. & Davies, D. B. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem. J. 293, 849–858 (1993).

    Article  CAS  Google Scholar 

  29. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  30. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Gadhavi for discussions and early work on FGFR overexpression; D. Chirgadze, E. Parisini and J. Patel for help with X-ray data collection; R. Sanishvili for user support at the SBC beamline; M. Vinkovic for help with the use of SHELX; M. Hyvonen for advice on protein refolding and help with the figures; and M. Symmons for advice on production of selenomethionyl protein. We are grateful to S. Malcolm for insightful comments on the phenotype of FGFR mutations in Apert syndrome and for the FGFR2 cDNA, and to D. Fernig for the FGF1 cDNA. Heparin lyase I was a gift of K. Johansen, Leo Pharmaceuticals, Denmark. This research was supported by grants from the MRC and the Wellcome Trust. Use of the Argonne National Laboratory Structural Biology Center beamlines at the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom L. Blundell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrini, L., Burke, D., von Delft, F. et al. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034 (2000). https://doi.org/10.1038/35039551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039551

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing