Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The proteins of linked genes evolve at similar rates

Abstract

Much more variation in the rate of protein evolution occurs than is expected by chance1. But why some proteins evolve rapidly but others slowly is poorly resolved. It was proposed, for example, that essential genes might evolve slower than dispensable ones2, but this is not the case3; and despite earlier claims4, rates of evolution do not correlate with amino-acid composition5. A few patterns have been found: proteins involved in antagonistic co-evolution (for example, immune genes3,6, parasite antigens7 and reproductive conflict genes8,9,10) tend to be rapidly evolving, and there is a correlation between the rate of protein evolution and the mutation rate of the gene1,11,12. Here we report a new highly statistically significant predictor of a protein's rate of evolution, and show that linked genes have similar rates of protein evolution. There is also a weaker similarity of rates of silent site evolution (see ref. 13), which appears to be, in part, a consequence of the similarity in rates of protein evolution. The similarity in rates of protein evolution is not a consequence of underlying mutational patterns. A pronounced negative correlation between the rate of protein evolution and a covariant of the recombination rate indicates that rates of protein evolution possibly reflect, in part, the local strength of stabilizing selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution of 10,000 mean modular differences for Ka/Ks data.
Figure 2: The frequency of differences in Ka/Ks between linked genes.
Figure 3

Similar content being viewed by others

References

  1. Wolfe, K. H. & Sharp, P. M. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J. Mol. Evol. 37, 441–456 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Wilson, A. C., Carlson, S. S. & White, T. J. Biochemical evolution. Ann. Rev. Biochem. 46, 573–639 ( 1977).

    Article  CAS  Google Scholar 

  3. Hurst, L. D. & Smith, N. G. C. Do essential genes evolve slowly? Curr. Biol. 9, 747–750 (1999).

    Article  CAS  Google Scholar 

  4. Graur, D. Amino-acid composition and the evolutionary rates of protein-coding genes. J. Mol. Evol. 22, 53–62 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Tourasse, N. J. & Li, W. -H. Selective constraints, amino acid composition, and the rate of protein evolution. Mol. Biol. Evol. 17, 656–664 (2000).

    Article  CAS  Google Scholar 

  6. Kuma, K., Iwabe, N. & Miyata, T. Functional constraints against variations on molecules from the tissue-level—slowly evolving brain-specific genes demonstrated by protein-kinase and immunoglobulin supergene families. Mol. Biol. Evol. 12, 123–130 ( 1995).

    Article  CAS  Google Scholar 

  7. Hughes, A. L. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics 127, 345–353 ( 1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsaur, S. C. & Wu, C. I. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol. Biol. Evol. 14, 544–549 (1997).

    Article  CAS  Google Scholar 

  9. Hurst, L. D. & McVean, G. T. Do we understand the evolution of genomic imprinting? Curr. Opin. Genet. Dev. 8, 701–708 (1998).

    Article  CAS  Google Scholar 

  10. Wyckoff, G. J., Wang, W. & Wu, C. I. Rapid evolution of male reproductive genes in the descent of man. Nature 403, 304–309 ( 2000).

    Article  ADS  CAS  Google Scholar 

  11. Makalowski, W. & Boguski, M. S. Synonymous and nonsynonymous substitution distances are correlated in mouse and rat genes. J. Mol. Evol. 47, 119– 121 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Smith, N. G. C. & Hurst, L. D. The effect of tandem substitutions on the correlation between synonymous and nonsynonymous rates in rodents. Genetics 153, 1395– 1402 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Matassi, G., Sharp, P. M. & Gautier, C. Chromosomal location effects on gene sequence evolution in mammals. Curr. Biol. 9, 786– 791 (1999).

    Article  CAS  Google Scholar 

  14. Silver, L. M. Mouse Genetics (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  15. Casane, D., Boissinot, S., Chang, B. H. J., Shimmin, L. C. & Li, W. H. Mutation pattern variation among regions of the primate genome. J. Mol. Evol. 45, 216–226 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Averof, M., Rokas, A., Wolfe, K. & Sharp, P. M. Evidence for a high frequency of double-nucleotide substitutions. Science 287, 1283–1286 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Caccio, S. et al. Methylation patterns in the isochores of vertebrate genomes. Gene 205, 119–124 (1997).

    Article  CAS  Google Scholar 

  18. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  19. Nordborg, M., Charlesworth, B. & Charlesworth, D. The effect of recombination on background selection. Genet. Res. 67, 159–174 (1996).

    Article  CAS  Google Scholar 

  20. Nachman, M. W. & Churchill, G. A. Heterogeneity in rates of recombination across the mouse genome. Genetics 142, 537–548 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Eyre-Walker, A. Recombination and mammalian genome evolution. Proc. R. Soc. London Ser. B 252, 237–243 ( 1993).

    Article  ADS  CAS  Google Scholar 

  22. Bernardi, G. The human genome: organization and evolutionary history. Annu. Rev. Genet. 29, 445–476 (1995).

    Article  CAS  Google Scholar 

  23. Drouin, R., Holmquist, J. P. & Richer, C. L. High-resolution replication bands compared with morphologic G- and R-bands. Adv. Hum. Genet. 22, 47– 115 (1994).

    Article  CAS  Google Scholar 

  24. Bernardi, G. et al. The mosaic genome of warm-blooded vertebrates. Science 228, 953–958 ( 1985).

    Article  ADS  CAS  Google Scholar 

  25. Galtier, N. & Mouchiroud, D. Isochore evolution in mammals: A human-like ancestral structure. Genetics 150, 1577–1584 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Duret, L., Mouchiroud, D. & Gouy, M. HOVERGEN—a database of homologous vertebrate genes. Nucleic Acid Res. 22, 2360– 2365 (1994).

    Article  CAS  Google Scholar 

  27. Smith, N. G. C. & Hurst, L. D. The causes of synonymous rate variation in the rodent genome: Can substitution rates be used to estimate the sex bias in mutation rate? Genetics 152, 661–673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, W. -H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 36, 96–99 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Pamilo, P. & Bianchi, N. O. Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol. Biol. Evol. 10, 271–281 ( 1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We think W.-H. Li for comments on an earlier version of the manuscript. L.D.H. is funded by The Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence D. Hurst.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, E., Hurst, L. The proteins of linked genes evolve at similar rates. Nature 407, 900–903 (2000). https://doi.org/10.1038/35038066

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038066

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing