Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modern freshwater microbialite analogues for ancient dendritic reef structures

Abstract

Microbialites are organosedimentary structures that can be constructed by a variety of metabolically distinct taxa1. Consequently, microbialite structures abound in the fossil record, although the exact nature of the biogeochemical processes that produced them is often unknown2. One such class of ancient calcareous structures3,4,5, Epiphyton and Girvanella, appear in great abundance during the Early Cambrian. Together with Archeocyathids, stromatolites and thrombolites, they formed major Cambrian reef belts. To a large extent, Middle to Late Cambrian reefs are similar to Precambrian reefs6, with the exception that the latter, including terminal Proterozoic reefs7, do not contain Epiphyton or Girvanella. Here we report the discovery in Pavilion Lake, British Columbia, Canada, of a distinctive assemblage of freshwater calcite microbialites, some of which display microstructures similar to the fabrics displayed by Epiphyton and Girvanella. The morphologies of the modern microbialites vary with depth, and dendritic microstructures of the deep water (>30 m) mounds indicate that they may be modern analogues for the ancient calcareous structures. These microbialites thus provide an opportunity to study the biogeochemical interactions that produce fabrics similar to those of some enigmatic Early Cambrian reef structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unique assemblage of calcite microbialites, Pavilion Lake, British Columbia.
Figure 2: Photosynthetic microbial mat communities on microbialites.
Figure 3: Pavilion Lake microbialite morphotypes.
Figure 4: Modern microbialite microstructure compared to fabric of ancient carbonate deposit.

Similar content being viewed by others

References

  1. Burne, R. V. & Moore, L. S. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2, 241–254 (1987).

    Article  ADS  Google Scholar 

  2. Riding, R. in Calcareous Algae and Stromatolites (ed. Riding, R.) 55– 87 (Springer, Berlin, 1991).

    Google Scholar 

  3. Ahr, W. M. Paleoenvironment, algal structures, and fossil algae in the Upper Cambrian of Central Texas. J. Sedim. Petrol. 41, 205–219 (1971).

    Google Scholar 

  4. James, N. P. Megablocks of calcified algae in the Cow Head Breccia, western Newfoundland: Vestiges of a Cambro-Ordovician platform margin. GSA Bull. 92, 799–811 (1981).

    Article  Google Scholar 

  5. Read, J. F. & Pfeil, R. W. Fabrics of allochthonous reefal blocks, Shady dolomite (Lower to Middle Cambrian), Virginia Appalachians. J. Sedim. Petrol. 53, 761– 778 (1983).

    Google Scholar 

  6. Grotzinger, J. P. in Controls on Carbonate Platform and Basin Development Vol. 44 (eds Crevello, P. D., Wilson, J. L., Sarg, J. F. & Read, J. F.) 79–106 (SEPM Special Publication, Tulsa, 1989).

    Book  Google Scholar 

  7. Grotzinger, J. P. & Khetani, A. in Abstracts with Programs (Northeast Section) Conference Proceedings Vol. 27 (GSA Publications, Denver, 1995).

    Google Scholar 

  8. Fischl, P. Limestone and Dolomite Resource in B. C. Open File 1992-18 (British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Victoria, 1992).

    Google Scholar 

  9. Thompson, J. B. & Ferris, G. F. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18, 995– 998 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Thompson, J. B., Schultze-Lam, S., Beveridge, T. J. & Des Marais, D. J. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacteria picoplankton. Limnol. Oceanog. 42, 133– 141 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Halley, R. B. in Stromatolites (ed. Walter, M. R.) 435–445 (Elsevier, Amsterdam, 1976).

    Book  Google Scholar 

  12. Eggleston, J. R. & Dean, W. E. in Stromatolites (ed. Walter, M. R.) 479–488 (Elsevier, Amsterdam, 1976).

    Book  Google Scholar 

  13. Thompson, J. B., Ferris, F. G. & Smith, D. A. Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. Palaios 5, 52–75 (1990).

    Article  ADS  Google Scholar 

  14. Ferris, F. G., Thompson, J. B. & Beveridge, T. J. Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaios 12, 213 –219 (1997).

    Article  ADS  Google Scholar 

  15. Bischoff, J. L., Stine, S., Rosenbauer, R. J., Fitzpatrick, J. A. & Stafford, T. W. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA. Geochim. Cosmochim. Acta 57, 3855– 3865 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Walter, M. R. Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Spec. Pap. Palaeontol. 11, 103– 104 (1972).

    Google Scholar 

  17. Wray, J. L. Calcareous Algae (Elsevier, Amsterdam, 1977).

    Google Scholar 

  18. Bertrand-Sarfati, J. & Moussine-Pouchkine, A. Evolution and environmental conditions of Conophyton-Jacutophyton associations in the Atar dolomite (upper Proterozoic, Mauritania). Precambr. Res. 29, 207–234 ( 1985).

    Article  Google Scholar 

  19. Edwards, R. L., Chen, J. H. & Wasserburg, G. J. 238U-234U-232Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 81, 175–192 (1986).

    Article  ADS  Google Scholar 

  20. Chafetz, H. S. & Buczynski, C. Bacterially induced lithification of microbial mats. Palaios 7, 277–293 (1992).

    Article  ADS  Google Scholar 

  21. Pratt, B. Epiphyton and Renalcis- diagenetic microfossils from calcification of coccoid blue-green algae. J. Sedim. Petrol. 54, 948–971 (1984).

    Google Scholar 

  22. Lauritzen, S. -E. & Lundberg, J. Calibration of the speleothem delta function: an absolute temperature record for the Holocene in northern Norway. Holocene 9, 659– 669 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Ts’kw’aylaxw First Nation Tribe and Ocean Pacific Water Sports for their logistical assistance and support. Underwater photographs are courtesy of D. Reid, Ocean Photography. D. F. Blake, L. Duncan and B. Schauer provided technical support. M. Taylor, C. Stack and C. R. Omelon assisted with the identification of cyanobacteria and diatoms. Protection for the unique microbialites in Pavilion Lake is underway through the Protected Areas Strategy (PAS) Goal 2 initiative of the British Columbia provincial government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherry L. Cady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laval, B., Cady, S., Pollack, J. et al. Modern freshwater microbialite analogues for ancient dendritic reef structures . Nature 407, 626–629 (2000). https://doi.org/10.1038/35036579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036579

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing