Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uptake of dissolved organic carbon and trace elements by zebra mussels

Abstract

Zebra mussels (Dreissena polymorpha) are widespread and abundant in major freshwater ecosystems in North America, even though the phytoplankton food resources in some of these systems seem to be too low to sustain them1,2. Because phytoplankton biomass is greatly depleted in ecosystems with large D. polymorpha populations3,4 and bacteria do not seem to be an important food source for this species5, exploitation of alternative carbon sources may explain the unexpected success of D. polymorpha in such environments. Here we examine the possibility that absorption of dissolved organic carbon (DOC) from water6,7,8,9 could provide a nutritional supplement to zebra mussels. We find that mussels absorb 14C-labelled DOC produced by cultured diatoms with an efficiency of 0.23%; this indicates that DOC in natural waters could contribute up to 50% of the carbon demand of zebra mussels. We also find that zebra mussels absorb some dissolved metals that have been complexed by the DOM; although absorption of dissolved selenium was unaffected by DOC, absorption of dissolved cadmium, silver and mercury by the mussels increased 32-, 8.7- and 3.6-fold, respectively, in the presence of high-molecular-weight DOC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influx of algal DOC into zebra mussels.

Similar content being viewed by others

References

  1. Strayer, D. L. et al. Arrival, spread, and early dynamics of a zebra mussel ( Dreissena polymorpha) population in the Hudson River estuary. Can. J. Fish. Aquat. Sci. 53, 1143– 1149 (1996).

    Article  Google Scholar 

  2. Madon, S. P., Schneider, D. W., Stoeckel, J. A. & Sparks, R. E. Effects of inorganic sediment and food concentrations on energetic processes of the zebra mussel, Dreissena polymorpha: implications for growth in turbid rivers. Can. J. Fish. Aquat. Sci. 55, 401–413 (1998).

    Article  Google Scholar 

  3. Fahnenstiel, G. L., Lang, G. A., Nalepa, T. F. & Johengen, T. H. Effects of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21, 435–448 ( 1995).

    Article  CAS  Google Scholar 

  4. Caraco, N. F. et al. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78, 588–602 (1997).

    Article  Google Scholar 

  5. Findlay, S., Pace, M. L. & Fischer, D. T. Response of heterotrophic planktonic bacteria to the zebra mussel invasion of the tidal freshwater Hudson River. Microb. Ecol. 36, 131–140 (1998).

    Article  CAS  Google Scholar 

  6. Stephens, G. C. Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish-water annelids. Biol. Bull. 126, 150–162 (1964).

    Article  CAS  Google Scholar 

  7. Ferguson, J. C. A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biol. Bull. 162, 1–17 ( 1982).

    Article  CAS  Google Scholar 

  8. Wright, S. H., Southwell, K. M. & Stephens, G. C. Autoradiographic analysis of amino acid uptake by the gill of Mytilus. J. Comp. Physiol. B 154 , 249–256 (1984).

    Article  CAS  Google Scholar 

  9. Wright, S. H. & Manahan, D. T. Integumental nutrient uptake by aquatic organisms. Annu. Rev. Physiol. 51, 585–600 (1989).

    Article  CAS  Google Scholar 

  10. Wotton, R. S. Colloids, bubbles, and aggregates—a perspective on their role in suspension feeding. J. N. Am. Benthol. Soc. 15, 127 –135 (1996).

    Article  Google Scholar 

  11. Decho, A. W. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28, 73–153 (1990).

    Google Scholar 

  12. Ciborowski, J. J. H., Craig, D. A. & Fry, K. M. Dissolved organic matter as food for black fly larvae (Diptera: Simuliidae). J. N. Am. Benthol. Soc. 16, 771–780 (1997).

    Article  Google Scholar 

  13. Campbell, P. G. C. in Metal Speciation and Bioavailability in Aquatic Systems (eds Tessier, A. & Turner, D. R.) 45–102 (Wiley, Chichester, 1995).

    Google Scholar 

  14. Kôuch, J. & Pempkowiak, J. Molecular weight of humic acids as a major property of the substances influencing the accumulation rate of cadmium by a blue mussel (Mytilus edulis). Environ. Int. 22, 585–589 ( 1996).

    Article  Google Scholar 

  15. Carvalho, R. A., Benfield, M. C. & Santschi, P. H. Comparative bioaccumulation studies of colloidally complexed and free-ionic heavy metals in juvenile brown shrimp Penaeus aztecus (Crustacea: Decapoda: Penaeidae). Limnol. Oceanogr. 44, 403–414 ( 1999).

    Article  ADS  CAS  Google Scholar 

  16. Wang, W. -X., Fisher, N. S. & Luoma, S. N. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser. 140, 91–113 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Kryger, J. & Riisgård, H. U. Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77, 34–38 (1988).

    Article  ADS  Google Scholar 

  18. Roditi, H. A. & Fisher, N. S. Rates and routes of trace element uptake in zebra mussels. Limnol. Oceanogr. 44, 1730–1749 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Kepkay, P. E. Particle aggregation and the biological reactivity of colloids. Mar. Ecol. Prog. Ser. 109, 293–304 (1994).

    Article  ADS  Google Scholar 

  20. Cutter, G. A. Kinetic controls on the speciation of metalloids in seawater. Mar. Chem. 40, 65–80 ( 1992).

    Article  CAS  Google Scholar 

  21. Howarth, R. W., Marino, R., Garritt, R. & Sherman, D. Ecosystem respiration and organic carbon processing in a large, tidally influenced river: the Hudson River. Biogeochemistry 16, 83– 102 (1992).

    Article  CAS  Google Scholar 

  22. Findlay, S., Pace, M. L. & Fischer, D. T. Spatial and temporal variability in the lower food web of the tidal freshwater Hudson River. Estuaries 19, 866–873 (1996).

    Article  Google Scholar 

  23. Nichols, S. J. in Zebra Mussels: Biology, Impacts, and Control (eds Nalepa, T. F. & Schloesser, D. W.) 733–747 (Lewis, Boca Raton, 1993).

    Google Scholar 

  24. Walz, N. The energy balance of the freshwater mussel Dreissena polymorpha Pallas in laboratory experiments and in Lake Constance. III. Growth under standard conditions. Arch. Hydrobiol. 55 (suppl.), 121–141 (1978).

    Google Scholar 

  25. Fisher, N. S., Teyssié, J.-L., Fowler, S. W. & Wang, W.-X. Accumulation and retention of metals in mussels from food and water: a comparison under field and laboratory conditions. Environ. Sci. Technol. 30, 3232–3242 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Sañudo-Wilhelmy, S. A. & Gill, G. A. Phase-speciation of toxic metals in the Hudson River estuary. Eos 77, F200 (1996).

    Google Scholar 

  27. Lee, B.-G. & Fisher, N. S. Degradation and elemental release rates from phytoplankton debris and their geochemical implications. Limnol. Oceanogr. 37, 1345–1360 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Armstrong, F. A., Williams, P. M. & Strickland, J. D. Photooxidation of organic matter in seawater by ultraviolet radiation, analytical and other applications. Nature 211, 481–487 (1966).

    Article  ADS  CAS  Google Scholar 

  29. Hedges, J. I. et al. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol. Oceanogr. 39, 743–761 ( 1994).

    Article  ADS  CAS  Google Scholar 

  30. Santschi, P. H., Guo, L., Means, J. C. & Ravichandran, M. in Biogeochemistry of Gulf of Mexico Estuaries (eds Bianchi, T. S., Pennock, R. & Twilley, R. R.) 347–380 (Wiley, New York, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank J. Cole, G. Stephens and D. Strayer for comments on this manuscript. This work was supported by the New York Sea Grant Institute, the National Association of Photographic Manufacturers, the Hudson River Foundation, and the National Science Foundation (N.F.), and a NOAA NERRS graduate fellowship (H.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roditi, H., Fisher, N. & Sañudo-Wilhelmy, S. Uptake of dissolved organic carbon and trace elements by zebra mussels . Nature 407, 78–80 (2000). https://doi.org/10.1038/35024069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35024069

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing