Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of microbes in accretion, lamination and early lithification of modern marine stromatolites

Abstract

For three billion years, before the Cambrian diversification of life, laminated carbonate build-ups called stromatolites were widespread in shallow marine seas1,2. These ancient structures are generally thought to be microbial in origin and potentially preserve evidence of the Earth's earliest biosphere1,2,3. Despite their evolutionary significance, little is known about stromatolite formation, especially the relative roles of microbial and environmental factors in stromatolite accretion1,3. Here we show that growth of modern marine stromatolites represents a dynamic balance between sedimentation and intermittent lithification of cyanobacterial mats. Periods of rapid sediment accretion, during which stromatolite surfaces are dominated by pioneer communities of gliding filamentous cyanobacteria, alternate with hiatal intervals. These discontinuities in sedimentation are characterized by development of surface films of exopolymer and subsequent heterotrophic bacterial decomposition, forming thin crusts of microcrystalline carbonate. During prolonged hiatal periods, climax communities develop, which include endolithic coccoid cyanobacteria. These coccoids modify the sediment, forming thicker lithified laminae. Preservation of lithified layers at depth creates millimetre-scale lamination. This simple model of modern marine stromatolite growth may be applicable to ancient stromatolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shallow subtidal stromatolites, Highborne Cay, Bahamas.
Figure 2: Dominant prokaryotic communities on stromatolite surfaces.
Figure 3: Scanning laser confocal microscope image of a surface biofilm.
Figure 4: Lamination and microstructure in stromatolite subsurface.

Similar content being viewed by others

References

  1. Grotzinger, J. P & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313– 358 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Walter, M. R. in Early Life on Earth (ed. Bengtson, S.) Nobel Symposium Vol. 84, 270–286 (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  3. Walter, M. R. in Earth's Earliest Biosphere (ed. Schopf, J. W.) 187– 213 (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  4. Dravis, J. J. Hardened subtidal stromatolites, Bahamas. Science 219 , 385–386 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Dill, R. F., Shinn, E. A., Jones, A. T., Kelly, K. & Steinen, R. P. Giant subtidal stromatolites forming in normal salinity water. Nature, 324, 55–58 (1986).

    Article  ADS  Google Scholar 

  6. Reid, R. P., Macintyre, I. G., Steneck, R. S., Browne, K. M. & Miller, T. E. Stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies 33, 1 –18 (1995).

    Article  Google Scholar 

  7. Reid, R. P., Macintyre, I. G. & Steneck, R. S. A microbialite/algal ridge fringing reef complex, Highborne Cay, Bahamas. Atoll Res. Bull. 466, 1–18 (1999).

    Article  Google Scholar 

  8. Golubic, S. & Browne, K. M. Schizothrix gebeleinii sp. nova builds subtidal stromatolites, Lee Stocking Island. Algolog. Stud. 83, 273–290 ( 1996).

    Google Scholar 

  9. Visscher, P. T. et al. Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83, 1482–1491 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Visscher, P. T., Gritzer, R. F. & Leadbetter, E. R. Low-molecular weight sulfonates: a major substrate for sulfate reducers in marine microbial mats. Appl. Environ. Microbiol. 65, 3272–3278 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Decho, A. W., Visscher, P. T. & Reid, R. P. Cycling and production of natural microbial exopolymers (EPS) within a marine stromatolite. Aquat. Microb. Ecol. (submitted).

  12. Stal, L. J., van Gemerden, H. & Krumbein, W. E. Structure and development of a benthic microbial mat. FEMS Microbiol. Ecol. 31, 111– 125 (1985).

    Article  CAS  Google Scholar 

  13. Pinckney, J. L. & Reid, R. P. Productivity and community composition of stromatolitic microbial mats in the Exuma Cays, Bahamas. Facies 36, 204–207 (1997).

    Google Scholar 

  14. Seeong-Joo, L., Browne, K. M. & Golubic, S. in Microbial Sediments (eds Riding, R. E. & Awramik, S. M.) 16–24 (Springer, New York, 2000).

    Book  Google Scholar 

  15. Awramik, S. M. & Riding, R. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc. Natl Acad. Sci. USA 85, 1327–1329 ( 1988).

    Article  ADS  CAS  Google Scholar 

  16. Riding, R. in Biostabilization of Sediments (eds Krumbein, W. E., Paterson, D. M. & Stal, L. J.) Vol. 84, 183–202 (Oldenburg Univ. Press, Oldenburg, Germany, 1994).

    Google Scholar 

  17. Van Gemerden, H. Microbial mats: A joint venture. Mar. Geol. 113, 3–25 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Visscher, P. T., Reid, R. P. & Bebout, B. M. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology (in the press).

  19. Macintyre, I. G., Prufert-Bebout, L. & Reid, R. P. The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology (in the press).

  20. Reid R. P. & Macintyre, I. G. Microboring versus recrystallization: further insight into the micritization process. J. Sediment. Res. 70, 24–28 ( 2000).

    Article  ADS  Google Scholar 

  21. Golubic, S., Seeong-Joo, L. & Browne, K. M. in Microbial Sediments (eds Riding, R. E. & Awramik, S. M.) 57–67 (Springer, New York, 2000).

    Book  Google Scholar 

  22. Bertrand-Sarfati, J. in Stromatolites, Developments in Sedimentology (ed. Walter, M. R.) Vol. 20, 251–259 (Elsevier, New York, 1976).

    Google Scholar 

  23. Logan, B. W. Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. J. Geol. 69, 517– 533 (1961).

    ADS  Google Scholar 

  24. Monty, C. L. V. in Stromatolites, Developments in Sedimentology (ed. Walter, M. R.) Vol. 20, 193–250 (Elsevier, New York, 1976).

    Google Scholar 

  25. Chafetz, H. S. & Buczynski, C. Bacterially induced lithification of microbial mats. Palaios 7, 277–293 (1992).

    Article  ADS  Google Scholar 

  26. Bartley, J. K. Actualistic taphonomy of cyanobacteria: implications for the Precambrian fossil record. Palaios 11, 571– 586 (1996).

    Article  ADS  Google Scholar 

  27. Krumbein, W. E., Cohen, J. & Shilo, M. Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol. Oceanogr. 22, 635– 656 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Walter, M. R., Bauld, J., DesMarais, D. J. & Schopf, J. W. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 335–338 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  29. Decho, A. W. & Kawaguchi, T. Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions (EPS) using nanoplast resin. BioTechniques 27, 1246– 1252 (1999).

    CAS  PubMed  Google Scholar 

  30. Paerl, H. W., Bebout, B. M., Joye, S. B. & DesMarais, D. J. Microscale characterization of dissolved organic matter production and uptake in marine microbial mat communities. Limnol. Oceanogr. 38, 1150–1159 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

D. A. Dean prepared petrographic thin sections; T. Kawaguchi provided confocal images; N. Pinel analysed layer distribution. Numerous students assisted in field and laboratory studies. Logistical field support was provided by the crew of the RV Calanus and Highborne Cay management. This study is a contribution to the Research Initiative on Bahamian Stromatolites Project and International Geological Correlation Project Biosedimentology of Microbial Buildups. Funding for this research was provided by the US National Science Foundation, Ocean Sciences Division and NASA's Exobiology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. Visscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, R., Visscher, P., Decho, A. et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406, 989–992 (2000). https://doi.org/10.1038/35023158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023158

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing