Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organoplatinum crystals for gas-triggered switches

Abstract

Considerable effort is being devoted to the fabrication of nanoscale devices1. Molecular machines, motors and switches have been made, generally operating in solution2,3,4,5,6,7, but for most device applications (such as electronics and opto-electronics), a maximal degree of order and regularity is required8. Crystalline materials would be excellent systems for these purposes, as crystals comprise a vast number of self-assembled molecules, with a perfectly ordered three-dimensional structure9. In non-porous crystals, however, the molecules are densely packed and any change in them (due, for example, to a reaction) is likely to destroy the crystal and its properties. Here we report the controlled and fully reversible crystalline-state reaction of gaseous SO2 with non-porous crystalline materials consisting of organoplatinum molecules. This process, including repetitive expansion–reduction sequences (on gas uptake and release) of the crystal lattice, modifies the structures of these molecules without affecting their crystallinity. The process is based on the incorporation of SO2 into the colourless crystals and its subsequent liberation from the orange adducts by reversible bond formation and cleavage10. We therefore expect that these crystalline materials will find applications for gas storage devices and as opto-electronic switches11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Molecular structures and hydrogen bonding motifs of organoplatinum complexes 1 and 2.
Figure 3: ‘On/off’ switching between crystalline 1 and 2.
Figure 4: Time-resolved X-ray powder diffraction analysis of the transformation of crystalline 2 to 1 in an atmosphere of air.
Figure 5: Formation of crystalline 1 from a single crystal of 2.

Similar content being viewed by others

References

  1. Fox, M. A. Fundamentals in the design of molecular electronic devices: long-range charge carrier transport and electronic coupling. Acc. Chem. Res. 32, 201–207 (1999).

    Article  CAS  Google Scholar 

  2. Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152– 155 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Balzani, V., Gómez-López, M. & Stoddart, J. F. Molecular machines. Acc. Chem. Res. 31, 405–414 (1998).

    Article  CAS  Google Scholar 

  5. Sauvage, J. P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).

    Article  CAS  Google Scholar 

  6. Fabbrizzi, L., Licchelli, M. & Pallavicini, P. Transition metals as switches. Acc. Chem. Res. 32, 846–853 ( 1999).

    Article  CAS  Google Scholar 

  7. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 ( 1999).

    Article  CAS  Google Scholar 

  8. Liu, C. -Y. & Bard, A. J. Optoelectronic properties and memories based on organic single-crystal thin films. Acc. Chem. Res. 32, 235–245 (1999).

    Article  CAS  Google Scholar 

  9. Dunitz, J. D. in Perspectives in Supramolecular Chemistry. The Crystal as a Supramolecular Entity (ed. Desiraju, G. R.) 7 (Wiley, Chichester, 1996).

    Google Scholar 

  10. Albrecht, M., Gossage, R. A., Lutz, M., Spek, A. L. & van Koten, G. Diagnostic organometallic and metallodendritic materials for SO2 gas detection: reversible binding of sulfur dioxide to aryl platinum(II) complexes. Chem. Eur. J. 6, 1431–1445 (2000).

    Article  CAS  Google Scholar 

  11. Chen, P., Wu, X., Liu, J. & Tan, K. L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91– 93 (1999).

    Article  CAS  Google Scholar 

  12. Dillon, A. C. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 ( 1997).

    Article  ADS  CAS  Google Scholar 

  13. Ohashi, Y., Yanagi, K., Kurihara, T., Sasada, Y. & Ohgo, Y. Crystalline-state reaction of cobaloxime complexes by X-ray exposure. An order-to-order racemization in the crystal of [(S)-1-cyanoethyl](pyridine)-bis(dimethylglyoximato)cobalt(III). J. Am. Chem. Soc. 104, 6353– 6359 (1982).

    Article  CAS  Google Scholar 

  14. Novak, K., Enkelmann, V., Wegner, G. & Wagener, K. B. Crystallographic study of a single crystal to single crystal photodimerization and its thermal reverse reaction. Angew. Chem. Int. Edn Engl. 32, 1614–1616 (1993).

    Article  Google Scholar 

  15. Kobatake, S., Yamada, T., Uchida, K., Kato, N. & Irie, M. Photochromism of 1,2-bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene in a single crystalline phase. J. Am. Chem. Soc. 121, 2380–2386 (1999).

    Article  CAS  Google Scholar 

  16. Scheffer, J. R. & Pokkuluri, P. R. in Photochemistry in Organized & Constrained Media (ed. Ramamurthy, V.) 185 (VCH, New York, 1990).

    Google Scholar 

  17. Langeley, P. J. & Hulliger, J. Nanoporous and mesoporous organic structures: new openings for materials research. Chem. Soc. Rev. 28, 279–291 (1999).

    Article  Google Scholar 

  18. Estermann, M., McCusker, L. B., Baerlocher, C., Merouche, A. & Kessler, H. A synthetic gallo phosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature 352, 320–323 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Hajdu, J. et al. Millisecond X-ray diffraction and the first electron density map from Laue photographs of a protein crystal. Nature 329, 178–181 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Buss, C. E. et al. Structural investigations of vapochromic behavior. X-ray single-crystal and powder diffraction studies of [Pt(CN-iso-C3H7) 4][M(CN)4] for M = Pt or Pd. J. Am. Chem. Soc. 120, 7783–7790 ( 1998).

    Article  CAS  Google Scholar 

  21. Desiraju, G. R. Crystal Engineering; The Design of Organic Solids (Elsevier, Amsterdam, 1989).

    Google Scholar 

  22. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995).

    Book  Google Scholar 

  23. van Koten, G. Tuning the reactivity of metals held in a rigid ligand environment. Pure Appl. Chem. 61, 1681–1694 (1989).

    Article  CAS  Google Scholar 

  24. Davies, P. J. et al. Organoplatinum building blocks for one-dimensional hydrogen-bonded polymeric structures. Angew. Chem. Int. Edn Engl. 35 , 1959–1961 (1996).

    Article  CAS  Google Scholar 

  25. Braga, D., Grepioni, F. & Desiraju, G. R. Crystal engineering and organometallic architecture. Chem. Rev. 98, 1375–1405 (1998).

    Article  CAS  Google Scholar 

  26. Albrecht, M. & van Koten, G. Gas sensor materials based on metallodendrimers. Adv. Mater. 11, 171– 174 (1999).

    Article  CAS  Google Scholar 

  27. Darensbourg, M. Y., Tuntulani, T. & Reibenspies, J. H. Structure/function relationships in ligand-based SO2/O2 conversion to sulfate as promoted by nickel and palladium thiolates. Inorg. Chem. 34, 6287 –6290 (1995).

    Article  CAS  Google Scholar 

  28. Moffat, K. Time-resolved crystallography. Acta Crystallogr. A 54, 833–841 (1998).

    Article  CAS  Google Scholar 

  29. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 ( 2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. T. H. Lutz and A. M. M. Schreurs for technical assistance during the measurements and R. A. Gossage for discussions. This work was partially supported by the Council for Chemical Sciences from the Dutch Organization for Scientific Research (CW–NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard van Koten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, M., Lutz, M., Spek, A. et al. Organoplatinum crystals for gas-triggered switches. Nature 406, 970–974 (2000). https://doi.org/10.1038/35023107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023107

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing