Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SLAM (CDw150) is a cellular receptor for measles virus

Abstract

Measles virus continues to be a major killer of children, claiming roughly one million lives a year1. Measles virus infection causes profound immunosuppression, which makes measles patients susceptible to secondary infections accounting for high morbidity and mortality2. The Edmonston strain of measles virus, and vaccine strains derived from it, use as a cellular receptor human CD46 (refs 3, 4), which is expressed on all nucleated cells; however, most clinical isolates of measles virus cannot use CD46 as a receptor5. Here we show that human SLAM (signalling lymphocyte-activation molecule; also known as CDw150), a recently discovered membrane glycoprotein expressed on some T and B cells6, is a cellular receptor for measles virus, including the Edmonston strain. Transfection with a human SLAM complementary DNA enables non-susceptible cell lines to bind measles virus, support measles virus replication and develop cytopathic effects. The distribution of SLAM on various cell lines is consistent with their susceptibility to clinical isolates of measles virus. The identification of SLAM as a receptor for measles virus opens the way to a better understanding of the pathogenesis of measles virus infection, especially the immunosuppression induced by measles virus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measle virus binding to CHO cells expressing SLAM or CD46.
Figure 2: Infectivities of pseudotype viruses on B95a, Vero and transfected CHO cells.
Figure 3: Measles virus infection of CHO cells expressing SLAM or CD46.
Figure 4: Flow cytometry analysis of the cell-surface expression of SLAM.

Similar content being viewed by others

References

  1. Oldstone, M. B. A. Viruses, Plagues, & History (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  2. Griffin, D. E. & Bellini, W. J. in Fields Virology (eds. Fields, B. N. et al.) 1267–1312 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  3. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  5. Buckland, R. & Wild, T. F. Is CD46 the receptor for measles virus? Virus Res. 48, 1– 9 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Cocks, B. G. et al. A novel receptor involved in T-cell activation. Nature 376, 260–263 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Kobune, F., Sakata, H. & Sugiura, A. Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J. Virol. 64, 700–705 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobune, F. et al. Nonhuman primate models of measles. Lab. Anim. Sci. 46, 315–320 ( 1996).

    CAS  PubMed  Google Scholar 

  9. Schneider-Schaulies, J. et al. Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc. Natl Acad. Sci. USA 92, 3943–3947 ( 1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. & Ter Meulen, V. Differential downregulation of CD46 by measles virus strains. J. Virol. 69, 7257–7259 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lecouturier, V. et al. Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J. Virol. 70, 4200– 4204 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu, E. C. et al. A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J. Virol. 72, 2905– 2916 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka, K., Xie, M. & Yanagi, Y. The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Arch. Virol. 143, 213–225 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  14. Tatsuo, H. et al. Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J. Virol. 74, 4139–4145 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takada, A. et al. A system for functional analysis of Ebola virus glycoprotein. Proc. Natl Acad. Sci. USA 94, 14764– 14769 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants by a novel eukaryotic vector. Gene 108, 193–200 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Sidorenko, S. P. & Clark, E. A. Characterization of a cell surface glycoprotein IPO-3, expressed on activated human B and T lymphocytes. J. Immunol. 151, 4614– 4624 (1993).

    CAS  PubMed  Google Scholar 

  18. Manchester, M. et al. Clinical isolates of measles virus use CD46 as a cellular receptor. J. Virol. 74, 3967– 3974 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huber, M. et al. Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185, 299– 308 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Aversa, G. et al. SLAM and its role in T cell activation and Th cell responses. Immunol. Cell Biol. 75, 202– 205 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Aversa, G., Chang, C.-C., Carballido, J. M., Cocks, B. G. & de Vries, J. E. Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent, cyclosporin A-sensitive T cell proliferation and IFN-gamma production. J. Immunol. 158, 4036–4044 (1997).

    CAS  PubMed  Google Scholar 

  22. McChesney, M. B. et al. Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology 233, 74– 84 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Liszewski, M. K., Post, T. W. & Atkinson, J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu. Rev. Immunol. 9, 431–455 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Yanagi, Y., Cubitt, B. A. & Oldstone, M. B. A. Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187, 280– 289 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Schlender, J. et al. Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc. Natl Acad. Sci. USA 93, 13194– 13199 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Punnonen, J. et al. Soluble and membrane-bound forms of signaling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. J. Exp. Med. 185, 993 –1004 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Mikhalap, S. V. et al. CDw150 associates with Src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J. Immunol. 162, 5719–5727 ( 1999).

    CAS  PubMed  Google Scholar 

  29. Griffin, D. E. & Ward, B. J. Differential CD4 T cell activation in measles. J. Infect. Dis. 168, 275–281 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. McFarlin, D. E., Bellini, W. J., Mingioli, E. S., Behar, T. N. & Trudgett, A. Monospecific antibody to the haemagglutinin of measles virus. J. Gen. Virol. 48, 425 –429 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. A. Whitt for allowing us to use the VSVΔG*-GFP system; F. Kobune and M. Manchester for providing MV strains; T. Aoki for providing throat swabs from measles patients; and Y. Matsuura, K. Ishihara and members of our laboratory for helpful discussions. This work was supported by grants from the Ministry of Education, Science and Culture of Japan and from the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Drug ADR Relief, R&D Promotion and Product Review of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Yanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatsuo, H., Ono, N., Tanaka, K. et al. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000). https://doi.org/10.1038/35022579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022579

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing