Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval

Abstract

‘New’ memories are initially labile and sensitive to disruption before being consolidated into stable long-term memories1,2,3,4,5. Much evidence indicates that this consolidation involves the synthesis of new proteins in neurons6,7,8,9. The lateral and basal nuclei of the amygdala (LBA) are believed to be a site of memory storage in fear learning10. Infusion of the protein synthesis inhibitor anisomycin into the LBA shortly after training prevents consolidation of fear memories11. Here we show that consolidated fear memories, when reactivated during retrieval, return to a labile state in which infusion of anisomycin shortly after memory reactivation produces amnesia on later tests, regardless of whether reactivation was performed 1 or 14 days after conditioning. The same treatment with anisomycin, in the absence of memory reactivation, left memory intact. Consistent with a time-limited role for protein synthesis production in consolidation, delay of the infusion until six hours after memory reactivation produced no amnesia. Our data show that consolidated fear memories, when reactivated, return to a labile state that requires de novo protein synthesis for reconsolidation. These findings are not predicted by traditional theories of memory consolidation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the amygdala at four different rostral–caudal planes.
Figure 2: A test of whether consolidated fear memories can become labile when reactivated.
Figure 3: Intact memory if anisomycin infusions are delayed by 6 h.
Figure 4: Fourteen days after training, anisomycin infusions after reactivation of the memory still produce amnesia.
Figure 5: Amnesia following anisomycin is not due to nonspecific effects.

Similar content being viewed by others

References

  1. Müller, G. E. & Pilzecker, A. Experimentelle beitrage zur lehre vom gedachtnis. Z. Psychol. (Suppl. 1) (1900).

  2. Burnham, W. H. Retroactive amnesia: illustrative cases and a tentative explanation. Am. J. Psychol. 14, 382–396 (1903).

    Article  Google Scholar 

  3. Duncan, C. P. The retroactive effect of electroconvulsive shock. J. Comp. Physiol. Psychol. 42, 32–44 ( 1949).

    Article  CAS  Google Scholar 

  4. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949 ).

    Google Scholar 

  5. Dudai, Y. Consolidation: Fragility on the road to the engram. Neuron 17, 367–370 (1996).

    Article  CAS  Google Scholar 

  6. Goelet, P., Castellucci, V. F., Schacher, S. & Kandel, E. R. The long and short of long-term memory—a molecular framework. Nature 322, 419–422 ( 1986).

    Article  CAS  ADS  Google Scholar 

  7. Flexner, L. B., Flexner, J. B. & Stellar, E. Memory and cerebral protein synthesis in mice as affected by graded amounts of puromycin. Exp. Neurol. 13, 264–272 (1965).

    Article  CAS  Google Scholar 

  8. Davis, H. P. & Squire, L. R. Protein synthesis and memory. A review. Psychol. Bull. 96, 518– 559 (1984).

    Article  CAS  Google Scholar 

  9. Agranoff, B. W. in Basic Neurochemistry (eds Siegel, G. J., Albers, R. W., Agranoff, B. W. & Catzman, R.) 801–820 (Little, Brown, Boston, 1981).

    Google Scholar 

  10. Fanselow, M. S. & LeDoux, J. E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23, 229– 232 (1999).

    Article  CAS  Google Scholar 

  11. Schafe, G. E. & LeDoux, J. E. Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and PKA in the amygdala. J. Neurosci. (in the press).

  12. McGaugh, J. L. Memory—a century of consolidation. Science 287 , 248–251 (2000).

    Article  CAS  ADS  Google Scholar 

  13. Misanin, J. R., Miller, R. R. & Lewis, D. J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160, 203–204 ( 1968).

    Article  Google Scholar 

  14. Judge, M. E. & Quartermain, D. Characteristics of retrograde amnesia following reactivation of memory in mice. Physiol. Behav. 28, 585–590 ( 1982).

    Article  CAS  Google Scholar 

  15. Sara, S. J. Retrieval and reconsolidation: toward a neurobiology of remembering. Learn. Mem. 7, 73–84 ( 2000).

    Article  CAS  Google Scholar 

  16. Mactutus, C. F., Riccio, D. C. & Ferek, J. M. Retrograde amnesia for old (reactivated) memory: Some anomalous characteristics. Science 204, 1319–1320 (1979).

    Article  CAS  ADS  Google Scholar 

  17. Davis, M. Neurobiology of fear responses: the role of the amygdala. J. Neuropsychiat. Clin. Neurosci. 9, 382–402 (1997).

    Article  CAS  Google Scholar 

  18. Fanselow, M. S. Pavlovian conditioning, negative feedback, and blocking: mechanisms that regulate association formation. Neuron 20, 625– 627 (1998).

    Article  CAS  Google Scholar 

  19. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  20. Blanchard, R. J. & Blanchard, D. C. Crouching as an index of fear. J. Comp. Physiol. Psychol. 67, 370–375 (1969).

    Article  CAS  Google Scholar 

  21. Scholey, A. B., Rose, S. P., Zamani, M. R., Bock, E. & Schachner, M. A role for the neural cell adhesion molecule in a late, consolidating phase of glycoprotein synthesis six hours following passive avoidance training of the young chick. Neuroscience 55, 499–509 ( 1993).

    Article  CAS  Google Scholar 

  22. Brady, J. V. The effects of electroconvulsive shock on a conditioned emotional response: the permanence effect. J. Comp. Physiol. Psychol. 45 , 9–13 (1952).

    Article  CAS  Google Scholar 

  23. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    Article  CAS  Google Scholar 

  24. Bourtchouladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  Google Scholar 

  25. Guzowski, J. F. & McGaugh, J. L. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl Acad. Sci. USA 94, 2693–2698 ( 1997).

    Article  CAS  ADS  Google Scholar 

  26. Lamprecht, R., Harzvi, S. & Dudai, Y. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J. Neurosci. 17, 8443– 8450 (1997).

    Article  CAS  Google Scholar 

  27. Bartlett, F. C. Remembering (Cambridge Univ. Press, Cambridge, 1932 ).

    Google Scholar 

  28. Martin, K. C. et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    Article  CAS  Google Scholar 

  29. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533– 536 (1997).

    Article  CAS  ADS  Google Scholar 

  30. Rosenblum, K., Meiri, N. & Dudai, Y. Taste memory: the role of protein synthesis in gustatory cortex. Behav. Neural Biol. 59, 49– 56 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NIMH grants to J.E.L. and a HFSF grant to K.N. The work was also supported by a grant from the W. M. Keck Foundation to N.Y.U. The authors thank A. Schoute for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Nader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nader, K., Schafe, G. & Le Doux, J. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000). https://doi.org/10.1038/35021052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing