Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A colorimetric sensor array for odour visualization

Abstract

Array-based vapour-sensing devices are used to detect and differentiate between chemically diverse analytes. These systems—based on cross-responsive sensor elements—aim to mimic the mammalian olfactory system1,2,3 by producing composite responses unique to each odorant. Previous work has concentrated on a variety of non-specific chemical interactions4,5,6,7,8,9,10,11 to detect non-coordinating organic vapours. But the most odiferous, toxic compounds often bind readily to metal ions. Here we report a simple optical chemical sensing method that utilizes the colour change induced in an array of metalloporphyrin dyes upon ligand binding while minimizing the need for extensive signal transduction hardware. The chemoselective response of a library of immobilized vapour-sensing metalloporphyrin dyes permits the visual identification of a wide range of ligating (alcohols, amines, ethers, phosphines, phosphites, thioethers and thiols) and even weakly ligating (arenes, halocarbons and ketones) vapours. Water vapour does not affect the performance of the device, which shows a good linear response to single analytes, and interpretable responses to analyte mixtures. Unique colour fingerprints can be obtained at analyte concentrations below 2 parts per million, and responses to below 100 parts per billion have been observed. We expect that this type of sensing array will be of practical importance for general-purpose vapour dosimeters and analyte-specific detectors (for insecticides, drugs or neurotoxins, for example).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colour change profiles of a metalloporphyrin sensor array.
Figure 2: Comparison of Zn(TPP) spectral shifts upon exposure to ethanol and pyridine (py).
Figure 3: Colour fingerprints at low levels of analyte.
Figure 4: Miniaturized array.

Similar content being viewed by others

References

  1. Dryer, L. & Berghard, A. Odorant receptors: a plethora of G-protein-coupled receptors. Trends Pharmacol. Sci. 20, 413–417 (1999).

    Article  CAS  Google Scholar 

  2. Lancet, D. & Ben-Arie, N. Olfactory receptors. Curr. Biol. 3, 668–674 ( 1993).

    Article  CAS  Google Scholar 

  3. Axel, R. The molecular logic of smell. Sci. Am. 273, 154–159 (1995).

    Article  CAS  Google Scholar 

  4. Freund, M. S. & Lewis, N. S. A chemically diverse conducting polymer-based “electronic nose”. Proc. Natl Acad. Sci. USA 92, 2652–2656 ( 1995).

    Article  ADS  CAS  Google Scholar 

  5. Lonergan, M. C. et al. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mater. 8, 2298–2312 (1996).

    Article  CAS  Google Scholar 

  6. Walt, D. R. Fiber optic imaging sensors. Acc. Chem. Res. 31, 267–278 (1998).

    Article  CAS  Google Scholar 

  7. Dickinson, T. A., White, J., Kauer, J. S. & Walt, D. R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 697–700 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Heilig, A. et al. Gas identification by modulating temperatures of SnO2-based thick film resistors. Sens. Actuators B 43, 45–51 (1997).

    Article  CAS  Google Scholar 

  9. Gardner, J. W., Shurmer, H. V. & Tan, T. T. Application of an electronic nose to the discrimination of coffees. Sens. Actuators B 6, 71– 75 (1992).

    Article  CAS  Google Scholar 

  10. Crooks, R. M. & Ricco, A. J. New organic materials suitable for use in chemical sensor arrays. Acc. Chem. Res. 31, 219–227 (1998).

    Article  CAS  Google Scholar 

  11. Grate, J. W. & Abraham, M. H. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens. Actuators B 3, 85– 111 (1991).

    Article  CAS  Google Scholar 

  12. Gelperin, A., Flores, J. & Raccuia-Behling, F. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk. J. Neurophysiol. 83, 116–127 ( 2000).

    Article  CAS  Google Scholar 

  13. Baron, A. E., Danielson, J. D. S., Gouterman, M., Wan, J. R. & Callis, J. B. Submillisecond response times of oxygen-quenched luninescent coatings. Rev. Sci. Instrum. 64, 3394–3402 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Lee, W. et al. Halogenated platinum porphyrins as sensing materials for luminescence-based oxygen sensors. J. Mater. Chem. 3, 1031– 1035 (1993).

    Article  CAS  Google Scholar 

  15. Vaughan, A. A., Baron, M. G. & Narayanaswamy, R. Optical ammonia sensing films based on an immobilized metalloporphyrin. Anal. Commun. 33, 393– 396 (1996).

    Article  CAS  Google Scholar 

  16. Brunink, J. A. J. et al. The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Anal. Chim. Acta 325, 53–64 (1996).

    Article  CAS  Google Scholar 

  17. Di Natale, C. et al. The exploitation of metalloporphyrins as chemically interactive material in chemical sensors. Mater. Sci. Eng. C 5, 209–215 (1998).

    Article  Google Scholar 

  18. Blauer, G. & Sund, H. (eds) Optical Properties and Structure of Tetrapyrroles (de Gruyter, Berlin, 1985).

    Google Scholar 

  19. Nappa, M. & Valentine, J. S. The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc. J. Am. Chem. Soc. 100, 5075– 5080 (1978).

    Article  CAS  Google Scholar 

  20. Suslick, K. S. & Van Deusen-Jeffries, S. in Comprehensive Supramolecular Chemistry (ed. Lehn, J. M.) 141– 170 (Elsevier, Oxford, 1996).

    Google Scholar 

  21. Bhyrappa, P., Young, J. K., Moore, J. S. & Suslick, K. S. Dendrimer porphyrins: synthesis and catalysis. J. Am. Chem. Soc. 118, 5708–5711 ( 1996).

    Article  CAS  Google Scholar 

  22. Chou, J.-H., Nalwa, H. S., Kosal, M. E., Rakow, N. A. & Suslick, K. S. in The Porphyrin Handbook (eds Kadish, K., Smith, K. & Guilard, R.) 43–132 (Academic, New York, 2000).

    Google Scholar 

  23. Bhyrappa, P., Vaijayanthimala, G. & Suslick, K. S. Shape-selective ligation to dendrimer-metalloporphyrins. J. Am. Chem. Soc. 121, 262– 263 (1999).

    Article  CAS  Google Scholar 

  24. Sen, A. & Suslick, K. S. Shape selective discrimination of small organic molecules. J. Am. Chem. Soc. (in the press).

  25. Adler, A. D. et al. A simplified synthesis for meso-tetraphenylporphin. J. Org. Chem. 32, 476 (1967).

    Article  CAS  Google Scholar 

  26. Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. On the preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 32, 2443–2445 (1970).

    Article  CAS  Google Scholar 

  27. Barley, M., Becker, J. Y., Domazetis, G., Dolphin, D. & James, B. R. Synthesis and redox chemistry of octaethylporphyrin complexes of ruthenium(II) and ruthenium(III). Can. J. Chem. 61, 2389–2396 (1983).

    Article  CAS  Google Scholar 

  28. Datta-Gupta, N. & Bardos, T. J. Synthetic porphyrins II: preparation and spectra of some metal chelates of para-substituted-meso-tetraphenylporphines. J. Pharm. Sci. 57, 300– 304 (1968).

    Article  CAS  Google Scholar 

  29. Yaws, C. L. Handbook of Vapor Pressure (Gulf, Houston, 1994).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US NIH and in part by the US DOD and DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Suslick.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakow, N., Suslick, K. A colorimetric sensor array for odour visualization. Nature 406, 710–713 (2000). https://doi.org/10.1038/35021028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021028

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing