Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NO is necessary and sufficient for egg activation at fertilization

Abstract

The early steps that lead to the rise in calcium and egg activation at fertilization are unknown but of great interest—particularly with the advent of in vitro fertilization techniques for treating male infertility and whole-animal cloning by nuclear transfer. This calcium rise is required for egg activation and the subsequent events of development in eggs of all species1,2. Injection of intact sperm or sperm extracts can activate eggs, suggesting that sperm-derived factors may be involved. Here we show that nitric oxide synthase is present at high concentration and active in sperm after activation by the acrosome reaction. An increase in nitrosation within eggs is evident seconds after insemination and precedes the calcium pulse of fertilization. Microinjection of nitric oxide donors or recombinant nitric oxide synthase recapitulates events of egg activation, whereas prior injection of oxyhaemoglobin, a physiological nitric oxide scavenger, prevents egg activation after fertilization. We conclude that nitric oxide synthase and nitric-oxide-related bioactivity satisfy the primary criteria of an egg activator: they are present in an appropriate place, active at an appropriate time, and are necessary and sufficient for successful fertilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NOS in S. purpuratus gametes.
Figure 2: NOS activity in S. purpuratus gametes.
Figure 3: Nitrosation after S. purpuratus gamete activation.
Figure 4: NO is necessary and sufficient for egg activation.

Similar content being viewed by others

References

  1. Epel, D. in Handbook of Physiology (eds. Hoffman, J. F. & Jamieson, J. J.) 859–884 (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  2. Stricker, S. A. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157– 176 (1999).

    Article  CAS  Google Scholar 

  3. Regulski, M. & Tully, T. Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. Proc. Natl Acad. Sci. USA 92 , 9072–9076 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Hope, B. T., Michael, G. J., Knigge, K. M. & Vincent, S. R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl Acad. Sci. USA 88, 2811–2814 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Bredt, D. S. & Schmidt, H. H. H. W. in Methods in Nitric Oxide Research (eds Feelisch, M. & Stamler, J. S.) 249– 255 (John Wiley & Sons, Chichester, 1996).

    Google Scholar 

  6. Giraldez, R. R. & Zweier, J. L. An improved assay for measurement of nitric oxide synthase activity in biological tissues. Anal. Biochem. 261, 29– 35 (1998).

    Article  CAS  Google Scholar 

  7. Misko, T. P., Schilling, R. J., Salvemini, D., Moore, W. M. & Currie, M. G. A fluorometric assay for the measurement of nitrite in biological samples. Anal. Biochem. 214 , 11–16 (1993).

    Article  CAS  Google Scholar 

  8. Kojima, H. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).

    Article  CAS  Google Scholar 

  9. Guerrero, A. & Darszon, A. Evidence for the activation of two different Ca2+ channels during the egg jelly-induced acrosome reaction of sea urchin sperm. J. Biol. Chem. 264, 19593–19599 (1989).

    CAS  PubMed  Google Scholar 

  10. Podell, S. B. & Vacquier, V. D. Wheat germ agglutinin blocks the acrosome reaction in Strongylocentrotus purpuratus sperm by binding a 210,000-mol.wt membrane protein. J. Cell Biol. 99 , 1598–1604 (1984).

    Article  CAS  Google Scholar 

  11. Turner, E., Klevitt, R., Hager, L. J. & Shapiro, B. M. Ovothiols, a family of redox-active mercaptohistidine compounds from marine invertebrate eggs. Biochemistry 26, 4028 –4036 (1987).

    Article  CAS  Google Scholar 

  12. Gross, S. S. & Lane, P. Physiological reactions of nitric oxide and hemoglobin: a radical rethink. Proc. Natl Acad. Sci. USA 96, 9967–9969 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Ciapa, B. & Epel, D. An early increase in cGMP follows fertilization of sea urchin eggs. Biochem. Biophys. Res. Commun. 223, 633–636 (1996).

    Article  CAS  Google Scholar 

  14. Kuroda, R. et al. Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding Ca2+ transients in fertilization of sea urchin eggs. Zygote (in the press).

  15. Willmott, N. et al. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J. Biol. Chem. 271, 3699-3705 (1996).

    Article  Google Scholar 

  16. Sexton, D. J., Muruganandam, A., McKenney, D. J. & Mutus, B. Visible light photochemical release of nitric oxide from S-nitrosoglutathione: potential photochemotherapeutic applications. Photochem. Photobiol. 59, 463–467 ( 1994).

    Article  CAS  Google Scholar 

  17. Crossley, I., Whalley, T. & Whitaker, M. Guanosine 5′-thiotriphosphate may stimulate phosphoinositide messenger production in sea urchin eggs by a different route than the fertilizing sperm. Cell. Reg. 2, 121– 133 (1991).

    Article  CAS  Google Scholar 

  18. Lee, S. -J., Christenson, L., Martin, T. & Shen, S. S. The cyclic GMP-mediated calcium release pathway in sea urchin eggs is not required for the rise in calcium during fertilization. Dev. Biol. 180, 324–335 ( 1996).

    Article  CAS  Google Scholar 

  19. Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237 (1997).

    Article  ADS  Google Scholar 

  20. Nadai, C. D., Cailliau, K., Epel, D. & Ciapa, B. Detection of phospholipase Cγ in sea urchin eggs. Dev. Growth. Diff. 40, 669–676 (1998).

    Article  Google Scholar 

  21. Rongish, B. J., Wu, W. & Kinsey, W. H. Fertilization-induced activation of phospholipase C in the sea urchin egg. Dev. Biol. 215, 147– 154 (1999).

    Article  CAS  Google Scholar 

  22. Akhand, A. A. et al. Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. J. Biol. Chem. 274, 25821– 25826 (1999).

    Article  CAS  Google Scholar 

  23. Giusti, A. F., Carroll, D. J., Abassi, Y. A. & Foltz, K. R. Evidence that a starfish egg src family tyrosine kinase associates with PLC-γ1 SH2 domains at fertilization. Dev. Biol. 208, 189–199 (1999).

    Article  CAS  Google Scholar 

  24. Schomer, B. M. & Epel, D. The role of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg. Dev. Biol. 216, 394– 402 (1999).

    Article  Google Scholar 

  25. Schultz, J. R., Wessel, G. M. & Vacquier, V. D. The exocytosis regulatory proteins syntaxin and VAMP are shed from sea urchin sperm during the acrosome reaction. Dev. Biol. 191, 80–87 ( 1997).

    Article  Google Scholar 

  26. Kao, J. P. Y. (ed.) Practical Aspects of Measuring [Ca2+] with Fluorescent Indicators . (Academic, San Diego, 1994).

    Book  Google Scholar 

  27. Antonini, E. & Brunori, M. Hemoglobin and Myoglobin in their Reactions with Ligands. (North Holland Publishing Company, Amsterdam, 1971).

    Google Scholar 

  28. Fehsel, K., Kroncke, K. D. & Kolb-Bachofen, V. Assays for detection of nitric oxide-induced apoptosis. Methods Enzymol. 269, 426– 34 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Tosuji for assistance with DAF, V. Lance for haemoglobin preparation, R. Lewis and H. Schulman for helpful comments, and K. Foltz and S. Feinstein for their support during R.C.K.'s stay at UCSB. RCK is a pre-doctoral fellow of the Howard Hughes Medical Institute. This work was supported by NIH grants to D.E. and J.B. and NSF grants to S.S. and S.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Epel.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, R., Baxter, G., Thompson, S. et al. NO is necessary and sufficient for egg activation at fertilization. Nature 406, 633–636 (2000). https://doi.org/10.1038/35020577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020577

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing