Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tertiary interaction that links active-site domains to the 5′ splice site of a group II intron

Abstract

Group II introns are self-splicing RNAs that are commonly found in the genes of plants, fungi, yeast and bacteria1,2. Little is known about the tertiary structure of group II introns, which are among the largest natural ribozymes. The most conserved region of the intron is domain 5 (D5), which, together with domain 1 (D1), is required for all reactions catalysed by the intron3. Despite the importance of D5, its spatial relationship and tertiary contacts to other active-site constituents have remained obscure. Furthermore, D5 has never been placed directly at a site of catalysis by the intron. Here we show that a set of tertiary interactions (λ–λ′) links catalytically essential regions of D5 and D1, creating the framework for an active-site and anchoring it at the 5′ splice site. Highly conserved elements similar to components of the λ–λ′ interaction are found in the eukaryotic spliceosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleotide analogue interference suppressions within D5 and D1.
Figure 2: Single-atom NAIS and D5 interferences at A115.
Figure 3: Model for the λ–λ′ interaction.
Figure 4: Representation of the putative group II intron active site, showing regions of D1 interacting with D5.

Similar content being viewed by others

References

  1. Michel, F. & Ferat, J.-L. Structure and activities of group II introns. Annu. Rev. Biochem. 64, 435– 461 (1995).

    Article  CAS  Google Scholar 

  2. Pyle, A. M. in Nucleic Acids and Molecular Biology (eds Eckstein, F. & Lilley, D. M. J.) 75–107 (Springer, New York, 1996).

    Google Scholar 

  3. Qin, P. & Pyle, A. The architectural organization and mechanistic function of group II intron structural elements. Curr. Opin. Struct. Biol. 8, 301–308 (1998).

    Article  CAS  Google Scholar 

  4. Strobel, S. A. & Shetty, K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc. Natl Acad. Sci. USA 94, 2903 –2908 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Boudvillain, M. & Pyle, A. Defining functional groups, core structural features and inter-domain tertiary contacts essential fro group II intron self-splicing: a NAIM analysis. EMBO J. 17, 7091–7104 (1998).

    Article  CAS  Google Scholar 

  6. Ortoleva-Donnelly, L., Sweczak, A. A., Gutell, R. R., Strobel, S. A. The chemical basis of adenosine conservation through the Tetrahymena ribozyme. RNA 4, 498–519 (1998).

    Article  CAS  Google Scholar 

  7. Ortoleva-Donnelly, L., Kronman, M., Strobel, S. A. Identifying RNA minor grouve tertiary contacts by nucleotide analogue interference mapping with N2-methylguanosine. Biochemistry 37, 12933–12942 ( 1998).

    Article  CAS  Google Scholar 

  8. Strobel, S. A., Ortoleva-Donnelly, L., Ryder, S. P., Cate, J. H., Moncoeur, E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nature Struct. Biol. 5, 60–65 (1998).

    Article  CAS  Google Scholar 

  9. Szewczak, A., Ortoleva-Donnelly L., Ryder S. P., Moncoeur, E. & Strobel, S. A. A minor groove RNA triple helix within the catalytic core of a group I intron. Nature Struct. Biol. 5, 1037–1042 (1998).

    Article  CAS  Google Scholar 

  10. Chin, K. & Pyle, A. M. Branchpoint attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5′ splice site selection. RNA 1 , 391–406 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pyle, A. M. & Green, J. B. Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry 33, 2716– 2725 (1994).

    Article  CAS  Google Scholar 

  12. Abramovitz, D. L., Friedman, R. A. & Pyle, A. M. Catalytic role of 2′-hydroxyl groups withing a group II intron active site. Science 271, 1410–1413 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Jacquier, A. & Michel, F. Base-pairing interactions involving the 5′ and 3′ terminal nucleotides of group II self-splicing introns. J. Mol. Biol. 213, 437– 447 (1990).

    Article  CAS  Google Scholar 

  14. Peebles, C. L., Zhang, M., Perlman, P. S. & Franzen, J. F. Identification of a catalytically critical trnucleotide in domain 5 of a group II intron. Proc. Natl Acad. Sci. USA 92, 4422–4426 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Konforti, B. B. et al. Ribozyme catalysis from the major groove of group II intron domain 5. Mol. Cell 1, 1– 20 (1998).

    Article  Google Scholar 

  16. Costa, M. & Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14, 1276–1285 (1995).

    Article  CAS  Google Scholar 

  17. Costa, M. & Michel, F. Tight binding of the 5′ exon to domain I of the group II self-splicing intron requires completion of the intron active sites. EMBO J. 18, 1025– 1037 (1999).

    Article  CAS  Google Scholar 

  18. Pley, H. M., Flaherty, K. M. & McKay, D. B. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111–113 ( 1994).

    Article  ADS  CAS  Google Scholar 

  19. Chanfreau, G. & Jacquier, A. Catalytic site components common to both splicing steps of a group II intron. Science 266, 1383–1387 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Michel, F., Umesono, K. & Ozeki, H. Compariative and functional anatomy of group II catalytic introns—a review. Gene 82, 5– 30 (1989).

    Article  CAS  Google Scholar 

  21. Moore, M. J., Query, C. C. & Sharp, P. A. in The RNA World (eds Gesteland, R. F. & Atkins, J. F.) 303–358 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  22. Kandels-Lewis, S. & Seraphin, B. Involvement of U6 snRNA in 5′ splice site selection. Science 262, 2035–2039 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Lesser, C. F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262, 1982–1988 ( 1993).

    Article  ADS  CAS  Google Scholar 

  24. Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the splicesomes. Cell 71, 803–817 (1992).

    Article  CAS  Google Scholar 

  25. Yu, Y. T., Maroney, P. A., Darzynkiwicz, E. & Nilsen, T. W. U6 snRNA function in nuclear pre-mRNA splicing: a phosphorothioate interference analysis of the U6 phosphate backbone. RNA 1, 46–54 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jarrell, K. A., Dietrich, R. C. & Perlman, P. S. Group II intron domain 5 facilitates a trans-splicing reaction. Mol. Cell. Biol. 8, 2361– 2366 (1988).

    Article  CAS  Google Scholar 

  27. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273, 1678– 1685 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Liu for preparing plasmids encoding exD123 mutants. We also thank S. Strobel for helpful discussions, R. Sousa for the clone of the Y639F RNA polymerase and P. S. Perlman for the gift of plasmids pJDI5′-75 and pJDI3′-673. M.B. is a Postdoctoral Research Associate and A.M.P. is an Assistant Investigator with the Howard Hughes Medical Institute, which we thank for financial support of this work. A.D.L. is supported by a fellowship from PRAXIS XXI (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marie Pyle.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boudvillain, M., de Lencastre, A. & Pyle, A. A tertiary interaction that links active-site domains to the 5′ splice site of a group II intron. Nature 406, 315–318 (2000). https://doi.org/10.1038/35018589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018589

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing