Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein

Abstract

Insect antifreeze proteins (AFP) are much more effective than fish AFPs at depressing solution freezing points by ice-growth inhibition1,2. AFP from the beetle Tenebrio molitor is a small protein (8.4 kDa) composed of tandem 12-residue repeats3 (TCTxSxxCxxAx). Here we report its 1.4-Å resolution crystal structure, showing that this repetitive sequence translates into an exceptionally regular β-helix. Not only are the 12-amino-acid loops almost identical in the backbone, but also the conserved side chains are positioned in essentially identical orientations, making this AFP perhaps the most regular protein structure yet observed. The protein has almost no hydrophobic core but is stabilized by numerous disulphide and hydrogen bonds. On the conserved side of the protein, threonine-cysteine-threonine motifs are arrayed to form a flat β-sheet, the putative ice-binding surface. The threonine side chains have exactly the same rotameric conformation and the spacing between OH groups is a near-perfect match to the ice lattice. Together with tightly bound co-planar external water, three ranks of oxygen atoms form a two-dimensional array, mimicking an ice section.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon illustrations of TmAFP.
Figure 2: Substructure of a 12-amino-repeat from TmAFP (white) forming one complete loop of the β-helix.
Figure 3: Dimer of TmAFP and organization of external water.
Figure 4: Lattice matching/occupation model for TmAFP binding to ice.

Similar content being viewed by others

References

  1. Tyshenko, M. G., Doucet, D., Davies, P. L. & Walker, V. K. The antifreeze potential of the spruce budworm thermal hysteresis protein. Nature Biotechnol. 15, 887– 890 (1997).

    Article  CAS  Google Scholar 

  2. Graether, S. P. et al. β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406, 325–328 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Graham, L. A., Liou, Y. -C., Walker, V. K. & Davies, P. L. Hyperactive antifreeze protein from beetles. Nature 388, 727–728 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Liou, Y. -C., Thibault, P., Davies, P. L., Walker, V. K. & Graham, L. A. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 38, 11415 –11424 (1999).

    Article  CAS  Google Scholar 

  5. Li, N., Chibber, B. A. K., Castellino, F. J. & Duman, J. G. Mapping of disulfide bridges in antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis. Biochemistry 37, 6343–6350 (1998).

    Article  CAS  Google Scholar 

  6. Duman, J. G. et al. Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis. J. Comp. Physiol. B 168, 225–232 (1998).

    Article  CAS  Google Scholar 

  7. Yoder, M. D., Keen, N. T. & Jurnak, F. New domain motif: structure of pectate lyase C, a secreted plant virulence factor. Science 260, 1503 –1507 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Mayans, O. et al. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure 5, 677–689 ( 1997).

    Article  CAS  Google Scholar 

  9. Petersen, T. N., Kauppinen, S. & Larsen, S. The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel beta helix. Structure 5, 533–544 ( 1997).

    Article  CAS  Google Scholar 

  10. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Raetz, C. R. & Roderick, S. L. A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 270, 997–1000 ( 1995).

    Article  ADS  CAS  Google Scholar 

  12. Jenkins, J., Mayans, O. & Pickersgill, R. Structure and evolution of parallel beta-helix proteins. J. Struct. Biol. 122, 236– 246 (1998).

    Article  CAS  Google Scholar 

  13. Davies, P. L. & Sykes, B. D. Antifreeze proteins. Curr. Opin. Struct. Biol. 7, 828–834 (1997).

    Article  CAS  Google Scholar 

  14. Liou, Y.-C. et al. Folding and structural characterization of highly disulfide-bonded beetle antifreeze protein produced in bacteria. Protein Expr. Purif. 19, 148–157 ( 2000).

    Article  CAS  Google Scholar 

  15. Knight, C. A., Driggers, E. & DeVries, A. L. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys. J. 64, 252– 259 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Sicheri, F. & Yang, D. S. C. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427–431 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Jia, Z., DeLuca, C. I., Chao, H. & Davies, P. L. Structural basis for the binding of a globular antifreeze protein to ice. Nature 384, 285–288 ( 1996).

    Article  ADS  CAS  Google Scholar 

  18. Liou, Y. -C, Davies, P. L. & Jia, Z. Crystallization and preliminary X-ray analysis of insect antifreeze protein from the beetle, Tenebrio molitor. Acta Cryst. D 56, 354–356 ( 2000).

    Article  CAS  Google Scholar 

  19. Sheldrick, G. M. & Schneider, T. R. in Methods in Enzymology Vol. 276 (eds Carter, C. W. & Sweet, R. M.) 319–343 (Academic Press, New York, 1997).

    Google Scholar 

  20. de La Fortelle, E. & Bricogne, G. in Methods in Enzymology Vol. 276 (eds Carter, C. W. & Sweet, R. M.) 472–494 (Academic Press, New York, 1997).

    Google Scholar 

  21. Chen, L. Q. et al. Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 Å determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc. Natl Acad. Sci. USA 88, 4240–4244 ( 1991).

    Article  ADS  CAS  Google Scholar 

  22. Jones, T. A., Zou, J. -Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A 47, 110–119 (1991).

    Article  Google Scholar 

  23. Brünger, A. T. et al. Crystallography & NMR system (CNS): A new software suite for macromolecular structure determination. Acta Cryst. D 54, 905–921 (1998).

    Article  Google Scholar 

  24. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  25. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  26. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Q. Ye, M. Kuiper and S. Gauthier for excellent technical assistance, and staff at the X8C beamline of Brookhaven National Laboratory for help with synchrotron data collection. This work was supported by grants from MRC of Canada to Z. J and P. L. D; Z. J. is an MRC Scholar. P.L.D. is a Killam Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liou, YC., Tocilj, A., Davies, P. et al. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406, 322–324 (2000). https://doi.org/10.1038/35018604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018604

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing