Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Presenilin is required for proper morphology and function of neurons in C. elegans

Abstract

Mutations in the human presenilin genes cause the most frequent and aggressive forms of familial Alzheimer's disease (FAD)1. Here we show that in addition to its role in cell fate decisions in non-neuronal tissues2,3,4, presenilin activity is required in terminally differentiated neurons in vivo. Mutations in the Caenorhabditis elegans presenilin genes sel-12 and hop-1 result in a defect in the temperature memory of the animals. This defect is caused by the loss of presenilin function in two cholinergic interneurons that display neurite morphology defects in presenilin mutants. The morphology and function of the affected neurons in sel-12 mutant animals can be restored by expressing sel-12 only in these cells. The wild-type human presenilin PS1, but not the FAD mutant PS1 A246E, can also rescue these morphological defects. As lin-12 mutant animals display similar morphological and functional defects to presenilin mutants, we suggest that presenilins mediate their activity in postmitotic neurons by facilitating Notch signalling. These data indicate cell-autonomous and evolutionarily conserved control of neural morphology and function by presenilins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tracking of animals on a radial temperature gradient.
Figure 2: AIY interneuron morphology in sel-12, wild-type, lin-12 and hop-1;sel-12 mutant animals.

Similar content being viewed by others

References

  1. Haass, C. & De Strooper, B. The presenilins in Alzheimer's disease—proteolysis holds the key. Science 286 , 916–919 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351– 354 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Levitan, D. et al. Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 14940–14944 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baumeister, R. et al. Human presenilin-1, but not familial Alzheimer's disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes Funct. 1, 149–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Hedgecock, E. M. & Russell, R. L. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 72, 4061– 4065 (1975).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mori, I. & Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344–348 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans . Phil. Trans. R. Soc. Lond. 314, 1– 340 (1986).

    Article  CAS  Google Scholar 

  8. Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111 , 158–170 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Hobert, O. et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Westlund, B., Parry, D., Clover, R., Basson, M. & Johnson, C. D. Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc. Natl Acad. Sci. USA 96, 2497–2502 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kovacs, D. M. et al. Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Med. 2, 224–229 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  12. Cook, D. G. et al. Expression and analysis of presenilin 1 in a human neuronal system: Localization in cell bodies and dendrites. Proc. Natl Acad. Sci. USA 93, 9223–9228 ( 1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, M. K. et al. Expression of Presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J. Neurosci. 16, 7513 –7525 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peckol, E., Zallen, J., Yarrow, J. & Bargmann, C. Sensory activity affects sensory axon development in C. elegans. Development 126, 1891–1902 ( 1999).

    CAS  PubMed  Google Scholar 

  15. Lee, R., Lobel, L., Hengartner, M., Horvitz, H. & Avery, L. Mutations in the α1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 16, 6066–6076 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol. 1, 479–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513–517 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ye, Y., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes and altered Notch processing in Drosophila presenilin mutants. Nature 398 , 525–529 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Giniger, E., Jan, L. & Jan, Y. Specifying the path of the intersegmental nerve of the Drosophila embryo: a role for Delta and Notch. Development 117, 431–440 (1993).

    CAS  PubMed  Google Scholar 

  21. Berezovska, O. et al. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93, 433–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286, 741–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Berezovska, O. et al. The Alzheimer-related gene presenilin 1 facilitates notch 1 in primary mammalian neurons. Brain Res. Mol. Brain Res. 69, 273–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Franklin, J. L. et al. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr. Biol. 9, 1448–1457 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Pedersen, W. A., Guo, Q., Hartman, B. K. & Mattson, M. P. Nerve growth factor-independent reduction in choline acetyltransferase activity in PC12 cells expressing mutant presenilin-1. J. Biol. Chem. 272, 22397–22400 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Mayford, M. & Kandel, E. R. Genetic approaches to memory storage. Trends Genet. 15, 463– 470 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977– 988 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, S., Avery, L., Baude, E. & Garbers, D. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384– 3387 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hobert, O., D'Alberti, T., Liu, X. & Ruvkun, G. Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. J. Neurosci. 18, 2084 –2096 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some strains used in this study were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources. We thank I. Greenwald, E. Lambie and H. R. Horvitz for strains; R. Barstead for cDNA libraries; O. Hobert and A. Fire for plasmids and R. Donhauser and M. Grim for technical assistance. We also thank I. Mori and H. Kagoshima for their help with interpreting thermotaxis data, and C. Haass and the members of our lab for discussions and for critically reading the manuscript. Part of this work was supported by grants from the DFG to R.B. and from EMBO to B.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Baumeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittenburg, N., Eimer, S., Lakowski, B. et al. Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406, 306–309 (2000). https://doi.org/10.1038/35018575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018575

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing