Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The segment polarity network is a robust developmental module

Abstract

All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently ‘imprint’ segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization1. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields2,3,4. In contrast, although in locusts pair-rule homologues may not control segmentation5,6, some segment polarity genes and their interactions are conserved3,7,8,9,10. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Segment polarity gene expression in Drosophila, pattern from wild type and several computer generated ‘solutions’.
Figure 2: Graphic representation of ‘solutions’ obtained with crisp or degraded initial conditions.
Figure 3: Sensitivity of individual solutions to varying individual parameters.

Similar content being viewed by others

References

  1. Patel, N. H. The evolution of arthropod segmentation: insights from comparisons of gene expression patterns. Dev. Suppl. 201– 207 (1994).

  2. Brown, S. J., Hilgenfeld, R. B. & Denell, R. E. The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc. Natl Acad. Sci. USA 91, 12922–12926 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Grbic, M., Nagy, L. M., Carroll, S. B. & Strand, M. Polyembryonic development: insect pattern formation in a cellularized environment. Development 122, 795–804 (1996).

    CAS  PubMed  Google Scholar 

  4. Brown, S. J., Parrish, J. K., Beeman, R. W. & Denell, R. E. Molecular characterization and embryonic expression of the even-skipped ortholog of Tribolium castaneum. Mech. Dev. 61, 165–173 (1997).

    Article  CAS  Google Scholar 

  5. Patel, N. H., Ball, E. E. & Goodman, C. S. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357, 339–342 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Dawes, R., Dawson, I., Falciani, F., Tear, G. & Akam, M. Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120, 1561– 1572 (1994).

    CAS  PubMed  Google Scholar 

  7. Patel, N. H., Kornberg, T. B. & Goodman, C. S. Expression of engrailed during segmentation in grasshopper and crayfish. Development 107, 201– 212 (1989).

    CAS  PubMed  Google Scholar 

  8. Brown, S. J., Patel, N. H. & Denell, R. E. Embryonic expression of the single Tribolium engrailed homolog. Dev. Genet. 15, 7– 18 (1994).

    Article  CAS  Google Scholar 

  9. Nagy, L. M. & Carroll, S. Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367, 460–463 ( 1994).

    Article  ADS  CAS  Google Scholar 

  10. Oppenheimer, D. I., MacNicol, A. M. & Patel, N. H. Functional conservation of the wingless-engrailed interaction as shown by a widely applicable baculovirus misexpression system. Curr. Biol. 9, 1288–1296 (1999).

    Article  CAS  Google Scholar 

  11. Akam, M. The molecular basis for metameric pattern in the Drosophila embryo. Development 101, 1–22 (1987).

    CAS  PubMed  Google Scholar 

  12. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. A. & O'Farrell, P. H. Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332, 604–609 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Ingham, P. W., Baker, N. E. & Martinez-Arias, A. Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even skipped. Nature 331, 73–75 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Martinez Arias, A., Baker, N. E. & Ingham, P. W. Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103, 157–170 (1988).

    CAS  PubMed  Google Scholar 

  15. DiNardo, S., Heemskerk, J., Dougan, S. & O'Farrell, P. H. The making of a maggot: patterning the Drosophila embryonic epidermis. Curr. Opin. Genet. Dev. 4, 529– 534 (1994).

    Article  CAS  Google Scholar 

  16. Hooper, J. E. Distinct pathways for autocrine and paracrine Wingless signalling in Drosophila embryos. Nature 372, 461– 464 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043– 1053 (1997).

    Article  CAS  Google Scholar 

  18. Kauffman, S. A. The Origins of Order: Self Organization and Selection in Evolution (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  19. Sanchez, L, van Helden, J. & Thieffry, D. Establishment of the dorso-ventral pattern during embryonic development of drosophila melanogaster: a logical analysis. J. Theor. Biol. 189, 377–389 (1997).

    Article  CAS  Google Scholar 

  20. Slack, J. M. W. From Egg to Embryo: Determinative Events in Early Development (Cambridge Univ. Press, New York, 1983).

    Google Scholar 

  21. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913– 917 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Morton-Firth, C. J., Shimizu, T. S. & Bray, D. A free-energy-based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286, 1059 –1074 (1999).

    Article  CAS  Google Scholar 

  23. Heemskerk, J., DiNardo, S., Kostriken, R. & O'Farrell, P. H. Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature 352, 404– 410 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Vincent, J. P. & Lawrence, P. A. Drosophila wingless sustains engrailed expression only in adjoining cells: evidence from mosaic embryos. Cell 77, 909– 915 (1994).

    Article  CAS  Google Scholar 

  25. Tabata, T., Eaton, S. & Kornberg, T. B. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6, 2635–2645 (1992).

    Article  CAS  Google Scholar 

  26. Schwartz, C., Locke, J., Nishida, C. & Kornberg, T. B. Analysis of cubitus interruptus regulation in Drosophila embryos and imaginal disks. Development 121, 1625– 1635 (1995).

    CAS  PubMed  Google Scholar 

  27. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553– 563 (1996).

    Article  CAS  Google Scholar 

  28. Alexandre, C., Jacinto, A. & Ingham, P. W. Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev. 10, 2003–2013 (1996).

    Article  CAS  Google Scholar 

  29. Dominguez, M., Brunner, M., Hafen, E. & Basler, K. Sending and receiving the hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 272, 1621– 1625 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Von Ohlen, T., Lessing, D., Nusse, R. & Hooper, J. E. Hedgehog signaling regulates transcription through cubitus interruptus, a sequence-specific DNA binding protein. Proc. Natl Acad. Sci. USA 94, 2404–2409 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge encouragement and support from D. Nasser and the NSF. E.M. was supported by a HHMI predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George von Dassow.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Dassow, G., Meir, E., Munro, E. et al. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000). https://doi.org/10.1038/35018085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018085

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing