Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stable germline transformation of the malaria mosquito Anopheles stephensi

Abstract

Anopheline mosquito species are obligatory vectors for human malaria, an infectious disease that affects hundreds of millions of people living in tropical and subtropical countries. The lack of a suitable gene transfer technology for these mosquitoes has hampered the molecular genetic analysis of their physiology, including the molecular interactions between the vector and the malaria parasite. Here we show that a transposon, based on the Minos element1 and bearing exogenous DNA, can integrate efficiently and stably into the germ line of the human malaria vector Anopheles stephensi , through a transposase-mediated process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Minos element integrates into the A. stephensi genome.

Similar content being viewed by others

References

  1. Franz, G. & Savakis, C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 19, 6646 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Loukeris, T. G., Livadaras, I., Arca, B., Zabalou, S. & Savakis, C. Gene transfer into the medfly, Ceratitis capitata , with a Drosophila hydei transposable element. Science 270, 2002–2005 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Coates, C. J., Jasinskiene, N., Miyashiro, L. & James, A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 95, 3748–3751 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Jasinskiene, N. et al. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl Acad. Sci. USA 95, 3743– 3747 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Berghammer, A. J., Klingler, M. & Wimmer, E. A. A universal marker for transgenic insects. Nature 402, 370–371 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Catteruccia, F. et al. Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc. Natl Acad. Sci. USA 97, 2157–2162 ( 2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  9. Klinakis, A. G., Loukeris, T. G., Pavlopoulos, A. & Savakis, C. Mobility assays confirm the broad host range activity of the Minos transposable element and validate new transformation tools. Insect Mol. Biol. (in the press).

  10. Miller, L. H. et al. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237, 779–781 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Loukeris, T. G., Arca, B., Livadaras, I., Dialektaki, G. & Savakis, C. Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 92, 9485–9489 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Pinkerton, A. C., Michel, K., O'Brochta, D. A. & Atkinson, P. W. Green fluorescent protein as a genetic marker in transgenic Aedes aegypti . Insect Mol. Biol. 9, 1– 10 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tamura, T. et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnol. 18, 81–84 ( 2000).

    Article  CAS  Google Scholar 

  14. Kumar, V. & Collins, F. H. A technique for nucleic acid in situ hybridization to polytene chromosomes of mosquitoes in the Anopheles gambiae complex. Insect Mol. Biol. 3, 41–47 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Richman at EMBL for the initial efforts for anopheline transformation and D. Prager and the MacArthur Vector Biology Network for the collegial interactions that greatly stimulated the project. The research was supported by a Network grant of the training and Mobility Program of the European Community, by Implyx Ltd, by WHO-TDR, by the John D. and Catherine T. MacArthur Foundation, the SFB 544 of the Deutsche Forchungsgemeinschaft and an individual fellowship of the Biotechnology Program of the EU (T.G.L.)

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catteruccia, F., Nolan, T., Loukeris, T. et al. Stable germline transformation of the malaria mosquito Anopheles stephensi . Nature 405, 959–962 (2000). https://doi.org/10.1038/35016096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016096

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing