Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export

Abstract

Diverse molecules, from small antibacterial drugs to large protein toxins, are exported directly across both cell membranes of Gram-negative bacteria. This export is brought about by the reversible interaction of substrate-specific inner-membrane proteins with an outer-membrane protein of the TolC family, thus bypassing the intervening periplasm. Here we report the 2.1-Å crystal structure of TolC from Escherichia coli, revealing a distinctive and previously unknown fold. Three TolC protomers assemble to form a continuous, solvent-accessible conduit—a ‘channel-tunnel’ over 140 Å long that spans both the outer membrane and periplasmic space. The periplasmic or proximal end of the tunnel is sealed by sets of coiled helices. We suggest these could be untwisted by an allosteric mechanism, mediated by protein–protein interactions, to open the tunnel. The structure provides an explanation of how the cell cytosol is connected to the external environment during export, and suggests a general mechanism for the action of bacterial efflux pumps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall architecture of TolC.
Figure 2: Structural repeat in TolC.
Figure 3: Interfacial contacts in the α-helical barrel.
Figure 4: Surface representation of the TolC interior, illustrating the charge distribution.
Figure 5: Exterior view of the proximal end of the α-helical barrel, approximately down the threefold symmetry axis.

Similar content being viewed by others

References

  1. Thanabalu, T., Koronakis, E., Hughes, C. & Koronakis, V. Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J. 17, 6487– 6496 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paulsen, I. T., Park, J. H., Choi, P. S. & Saier, M. H. A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals. FEMS Microbiol. Lett. 156, 1–8 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Koronakis, V., Koronakis, E. & Hughes, C. Isolation and characterisation of the C-terminal signal directing export of E. coli hemolysin across both bacterial membranes. EMBO J. 8, 595–605 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koronakis, V., Hughes, C. & Koronakis, E. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. EMBO J. 10, 3263–3272 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duong, F., Eichler, J., Price, A., Leonard, M. R. & Wickner, W. Biogenesis of the Gram-negative bacterial envelope. Cell 91, 567–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Glaser, P., Sakamoto, H., Bellalou, J., Ullmann, A. & Danchin, A. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-hemolysin bifunctional protein of Bordella pertussis . EMBO J. 7, 3997–4004 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koronakis, V. & Hughes, C. Bacterial signal peptide-independent protein export: HlyB-directed secretion of hemolysin. Sem. Cell Biol. 4, 7–16 ( 1993).

    Article  CAS  Google Scholar 

  8. Gilson, L., Mahanty, H. K. & Kolter, R. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 9, 3875– 3894 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nikaido, H. Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178, 5853–5859 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zgurskaya, H. I. & Nikaido, H. Bypassing the periplasm: reconstitution of the acrA/B multidrug efflux pump of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 7190–7195 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stone, B. J. & Miller, V. L. Salmonella enteritidis has a homolog of TolC that is required for virulence in BALB/C mice. Mol. Microbiol. 17, 701–712 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Koronakis, V., Li, J., Koronakis, E. & Stauffer, K. Structure of TolC, the outer-membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol. Microbiol. 23, 617–626 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Sharff, A. J., Koronakis, E., Luisi, B. & Koronakis, V. Oxidation of selenomethionine: Some MADness in the method! Acta Crystallogr. D 56, 785–788 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  14. Benz, R., Maier, E. & Gentshev, I. TolC of Escherichia coli functions as an outer membrane channel. Zentralbl. Bakteriol. 278, 187–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lupas, A. Predicting coiled-coil regions in proteins. Curr. Opin. Struct. Biol. 7, 388–393 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, J. M. & Church, G. M. Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J. Mol. Biol. 287, 695–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Pautsch, A. & Schulz, G. E. Structure of the outer membrane protein A transmembrane domain. Nature Struct. Biol. 5, 1013–1017 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Schirmer, T. et al. Structural basis for sugar translocation through maltoporin channels at 3.1Å resolution. Science 267, 512–514 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727– 733 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Kreusch, A. et al. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Protein Sci. 3, 58–63 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snijder, H. J. et al. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401, 717–721 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Buchanan, S. K. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nature Struct. Biol. 6, 56–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Locher, K. P. et al. Transmembrane signalling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95, 771–778. (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Ferguson, A. D. et al. Siderophore-mediated iron transport: Crystal structure of FhuA with bound lipopolysaccharide. Science 282, 2215–2220 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Schulz, G. E. Porins: general to specific, native to engineered passive pores. Curr. Opin. Struct. Biol. 6, 485–490 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Seo, J. & Cohen, C. Pitch diversity in α-helical coiled coils. Proteins Struct. Funct. Genet. 15, 223–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Crick, F. H. C. The packing of α-helices: simple coiled coils. Acta Crystallogr. 6, 689–697 ( 1953).

    Article  CAS  Google Scholar 

  28. Oas, T. G. & Endow, S. A. Springs and hinges: dynamic coiled coils and discontinuities. Trends Biochem. Sci. 19, 51–54 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Schatz, G. & Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  32. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. delaFortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494 ( 1997).

    Article  CAS  Google Scholar 

  34. Collaborative Computer Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

    Article  Google Scholar 

  35. Cowtan, K. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography Vol. 31 34–38 (Daresbury Laboratory, Daresbury, UK, 1994).

    Google Scholar 

  36. Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  37. Perrakis, A., Sixma, T. K., Wilson, K. S. & Lamzin, V. S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple refined dummy atomic models. Acta Crystallogr. D 53, 448–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Bricogne, G. Direct phase determination by entropy maximation and likelihood ranking: status report and perspectives. Acta Crystallogr. D 49, 37–60 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Carson, M. Ribbons. Methods Enzymol. 277, 493– 505 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

Download references

Acknowledgements

We thank A. Thompson, K. Henderson, N. Duke, A. Joachimiak, Z. Otwinowski, W. Minor, K. Phillips, M. Symmons and F. von Delft for help during data collection and discussions; C. Calladine, M. Perutz, J. Li and C. Andersen for discussions; and G. Bricogne and P. Roversi for help with the BUSTER program. We acknowledge support for EU facility access for data collection at DESY (Hamburg) and ESRF (Grenoble). This work is supported by a Medical Research Council Programme grant (to V.K. and C.H.). A.S. and B.L. are supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Koronakis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 459 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koronakis, V., Sharff, A., Koronakis, E. et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000). https://doi.org/10.1038/35016007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016007

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing