Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Cell biology

Risky immortalization by telomerase

Abstract

Senescence naturally limits the proliferation of mammalian cells in culture, possibly by shortening the telomere regions at the ends of chromosomes during cell division1,2. In support of this idea, introducing TERT, the catalytic subunit of telomerase — the enzyme that maintains chromosome ends — into certain cell types can extend their lifespan and potentially immortalize them3,4. It has been proposed that treatment with exogenous TERT might be useful for cell-based therapies by allowing indefinite expansion of normal human cells without damaging their genomes5,6. But we show here that TERT-driven cell proliferation is not genoprotective because it is associated with activation of the c-myc oncogene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: c-myc activity is increased in immortalized HMEC–hTERT cells.

Similar content being viewed by others

References

  1. Harley, C. B., Futcher, A. B. & Greider, C. W. Nature 345, 458– 460 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Harley, C. B. Mutat. Res. 256, 271–282 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Bodnar, A. G. et al. Science 279, 349–352 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Genes Dev. 12, 1769– 1774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morales, C. P. et al. Nature Genet. 21, 115– 118 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jiang, X. R. et al. Nature Genet. 21, 111– 114 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, P., Dong, P., Hannon, G. J. & Beach, D. Science 282, 2270–2272 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, K. J. et al. Nature Genet. 21, 220– 224 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Alitalo, K. et al. Biochim. Biophys. Acta 907, 1– 32 (1987).

    CAS  PubMed  Google Scholar 

  10. Kiyono, T. et al. Nature 396, 84–88 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Foster, S. A. & Galloway, D. A. Oncogene 12, 1773–1779 (1996).

    CAS  PubMed  Google Scholar 

  12. Kim, N. W. et al. Science 266, 2011– 2015 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Beach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Hannon, G. & Beach, D. Risky immortalization by telomerase. Nature 405, 755–756 (2000). https://doi.org/10.1038/35015674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015674

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing