Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic evidence for Late Cretaceous plume–ridge interaction at the Hawaiian hotspot

Abstract

When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts1,2,3,4. The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected3,5,6,7. Here we present Sr–Nd–Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51° N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions8 that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of volcanoes in the Hawaiian–Emperor island/seamount chain that have been dated (the age of Meiji is unknown).
Figure 2: Evolution of the Hawaiian hotspot with time.
Figure 3: Isotope ratios for tholeiitic basalts.

Similar content being viewed by others

References

  1. Schilling, J.-G. Iceland mantle plume: Geochemical evidence along Reykjanes Ridge. Nature 242, 565–571 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Verma, S. P., Schilling, J.-G. & Waggoner, D. G. Neodymium isotopic evidence for Galapagos hotspot-spreading centre system evolution. Nature 306, 654–657 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Ito, G. & Lin, J. Oceanic spreading center-hotspot interactions: Constraints from along-isochron bathymetric and gravity anomalies. Geology 23, 657–660 (1995).

    Article  ADS  Google Scholar 

  4. Muller, R. D., Roest, W. R. & Royer, J.-Y. Asymmetric sea-floor spreading caused by ridge-plume interactions. Nature 396, 455–459 (1998).

    Article  ADS  CAS  Google Scholar 

  5. White, W. M., McBirney, A. R. & Duncan, R. A. Petrology and geochemistry of the Galapagos Islands: Portrait of a pathological mantle plume. J. Geophys. Res. 98, 19533–19563 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Kincaid, C., Ito, G. & Gable, C. Laboratory investigation of the interaction of off-axis mantle plumes and spreading centres. Nature 376, 758–761 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Kingsley, R. H. & Schilling, J.-G. Plume-ridge interaction in the Easter-Salas y Gomez seamount chain-Easter microplate system: Pb isotope evidence. J. Geophys. Res. 103 24159–24177 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Mammerickx, J. & Sharman, G. F. Tectonic evolution of the North Pacific during the Cretaceous quiet period. J. Geophys. Res. 93, 3009–3024 (1988).

    Article  ADS  Google Scholar 

  9. Keller, R. A., Duncan, R. A. & Fisk, M. R. Geochemistry and 40Ar/39Ar geochronology of basalts from ODP Leg 145 (North Pacific Transect). Proc. ODP Sci. Res. 145, 333–344 (1995).

    CAS  Google Scholar 

  10. Clague, D. A. & Dalrymple, G. B. The Hawaiian-Emperor volcanic chain, Part I, Geologic evolution. US Geol. Surv. Prof. Pap. 1350, 5–54 (1987).

    Google Scholar 

  11. Lonsdale, P., Dieu, J. & Natland, J. Posterosional volcanism in the Cretaceous part of the Hawaiian hotspot trail. J. Geophys. Res. 98, 4081–4098 (1993).

    Article  ADS  Google Scholar 

  12. Dalrymple, G. B., Lanphere, M. A. & Clague, D. A. Conventional and 40Ar/39Ar K-Ar ages of volcanic rocks from Ojin (Site 430), Nintoku (Site 432), and Suiko (Site 433) seamounts and the chronology of volcanic propagation along the Hawaii-Emperor chain. Init. Rep. DSDP 55, 659–676 (1980).

    CAS  Google Scholar 

  13. Lanphere, M. A., Dalrymple, G. B. & Clague, D. A. Rb-Sr systematics of basalts from the Hawaii-Emperor volcanic chain. Init. Rep. DSDP 55, 695–706 (1980).

    CAS  Google Scholar 

  14. Chen, C.-Y. & Frey, F. A. Trace element and isotopic geochemistry of lavas from Haleakala volcano, East Maui, Hawaii: Implications for the origin of Hawaiian basalts. J. Geophys. Res. 90, 8743–8768 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Hauri, E. H. Major element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Garcia, M. O., Ito, E., Eiler, J. M. & Pietruszka, A. J. Crustal contamination of Kilauea volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu Oo eruption lavas. J. Petrol. 39, 803–817 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Dalrymple, G. B., Lanphere, M. A. & Natland, J. H. K-Ar minimum age for Meiji Guyot, Emperor seamount chain. Init. Rep. DSDP 55, 677–683 (1980).

    CAS  Google Scholar 

  18. Unruh, D. M., Stille, P. & Tatsumoto, M. Pb, Sr, and Nd isotopic study of basalts from the Hawaiian-Emperor chain (abstr.) in Hawaiian Symposium on How Volcanoes Work (eds Decker, R., Halbig, J., Hazlett, R., Okamura, R. & Wright, T.) 260 (Hawaii Volcano Observatory, Hilo, 1987).

  19. Class, C., Goldstein, S. L., Galer, S. J. G. & Weis, D. Young formation age of a mantle plume source. Nature 362, 715–721 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Weaver, B. L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104 381–397 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Hanan, B. B. & Schilling, J.-G. Easter microplate evolution; Pb isotope evidence. J. Geophys. Res. 94, 7432–7448 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Hauri, E. H., Whitehead, J. A. & Hart, S. R. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J. Geophys. Res. 99, 24275–24300 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Weis, D. et al. in The Indian Ocean: A Synthesis of Results from the Ocean Drilling Program (eds Duncan, R. A., Rea, D. K., Kidd, R. B., von Rad, U. & Weissel, J. K.) 57–89 (Geophysical Monograph 70, American Geophysical Union, Washington, DC, 1992).

    Google Scholar 

  24. Fisk, M. R. et al. Reunion hotspot magma chemistry over the past 65 m.y.: Results from Leg 115 of the Ocean Drilling Program. Geology 17, 934–937 (1989).

    Article  ADS  CAS  Google Scholar 

  25. White, W. M., Cheatham, M. M. & Duncan, R. A. Isotope geochemistry of Leg 115 basalts and inferences on the history of the Reunion mantle plume. Proc. ODP Sci. Res. 115, 53–61 (1990).

    Google Scholar 

  26. Fartnetani, D. G. & Richards, M. A. Thermal entrainment and melting in mantle plumes. Earth Planet. Sci. Lett. 136, 251–267 (1995).

    Article  ADS  Google Scholar 

  27. Renkin, M. L. & Sclater, J. G. Depth and age in the North Pacific. J. Geophys. Res. 93, 2919–2935 (1988).

    Article  ADS  Google Scholar 

  28. Wood, D. A., Joron, J. L. & Treuil, M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett. 45, 326–336 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Cheatham for assistance with the TIMS analyses, A. Ungerer for assistance with the ICP-MS analyses, and B. Hanan and E. Hauri for comments on the manuscript. DSDP samples from Meiji and Suiko seamounts were provided by the ODP West Coast Repository. This work was supported by a JOI/USSAC Ocean Drilling Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall A. Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, R., Fisk, M. & White, W. Isotopic evidence for Late Cretaceous plume–ridge interaction at the Hawaiian hotspot. Nature 405, 673–676 (2000). https://doi.org/10.1038/35015057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015057

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing