Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Roles of PPARs in health and disease

Abstract

In developed societies, chronic diseases such as diabetes, obesity, atherosclerosis and cancer are responsible for most deaths. These ailments have complex causes involving genetic, environmental and nutritional factors. There is evidence that a group of closely related nuclear receptors, called peroxisome proliferator-activated receptors (PPARs), may be involved in these diseases. This, together with the fact that PPAR activity can be modulated by drugs such as thiazolidinediones and fibrates, has instigated a huge research effort into PPARs1. Here we present the latest developments in the PPAR field, with particular emphasis on the physiological function of PPARs during various nutritional states, and the possible role of PPARs in several chronic diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PPARs at the basic level.
Figure 2: Action of PPARα and PPARγ at the cellular level.
Figure 3: Overview of the roles of PPARα and PPARγ during feeding and fasting.

Similar content being viewed by others

References

  1. Desvergene, B. & Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999).

    Google Scholar 

  2. Lin, Q., Ruuska, S. E., Shaw, N. S., Dong, D. & Noy, N. Ligand selectivity of peroxisome proliferator activated receptor alpha. Biochemistry 38, 185–190 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Ellinghaus, P., Wolfrum, C., Assmann, G., Spencer, F. & Seedorf, U. Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/sterol carrier protein x-deficient mice. J. Biol. Chem. 274, 2766 –2772 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Moya-Camarena, S. Y., Vanden Heuvel, J. P., Blanchard, S. G., Leesnitzer, L. A. & Belury, M. A. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J. Lipid Res. 40, 426–1433 (1999).

    Google Scholar 

  5. Rosen, E. D. et al. PPAR is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Basu-Modak, S. et al. Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J. Biol. Chem. 274, 35881–35888 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Lim, H. et al. Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARδ. Genes Dev. 13, 1561–1574 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foretz, M. et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol. 19, 3760–3768 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foretz, M., Guichard, C., Ferre, P. & Foufelle, F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic, expression of glucokinase and lipogenesis-related genes. Proc. Natl Acad. Sci. USA 96, 12737–12742 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rieusset, J. et al. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes 48, 699–705 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  11. Fajas, L. et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol. Cell. Biol. 19, 5495 –5503 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, M. Y., Lee, Y. & Unger, R. H. Novel form of lipolysis induced by leptin. J. Biol. Chem. 274, 17541–17544 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kubota, N. et al. PPAR mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597 –609 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Kersten, S. et al. Peroxisome proliferator activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leone, T. C., Weinheimer, C. J. & Kelly, D. P. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PARalpha-null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA 96, 7473–7478 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, M., Wise, S. C., Leff, T. & Su, T. Z. Troglitazone, an antidiabetic agent, inhibits cholesterol biosynthesis through a mechanism independent of peroxisome proliferator-activated receptor-gamma. Diabetes 48, 254–260 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kockx, M. F. et al. Fibrates suppress fibrinogen gene expression in rodents via activation of the peroxisome proliferator-activated receptor-alpha. Blood 93, 2991–2998 ( 1999).

    CAS  PubMed  Google Scholar 

  18. Devchand, P. R. et al. Chemical probes that differentially modulate peroxisome proliferator-activated receptor alpha and BLTR, nuclear and cell surface receptors for leukotriene B(4). J. Biol. Chem. 274, 23341– 23348 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Delerive, P. et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem. 274, 32048–32054 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Hill, M. R. et al. Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia. Infect. Immun. 67, 3488– 3493 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ricote, M., Huang, J. T., Welch, J. S. & Glass, C. K. The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J. Leukoc. Biol. 66 , 733–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Thieringer, R. et al. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-α responses of macrophages to lipopolysaccharide in vitro and in vivo. J. Immunol. 164, 1046–1054 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Demetri, G. D. et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA 96, 3951–3956 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suh, N. et al. A new ligand for the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), GW7845, inhibits rat mammary carcinogenesis. Cancer Res. 59, 5671–5673 ( 1999).

    CAS  PubMed  Google Scholar 

  25. He, T. C., Chan, T. A., Vogelstein, B. & Kinzler, K. W. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99, 335–345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barak, Y. et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585– 595 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Valve, R. et al. Two polymorphisms in the peroxisome proliferator-activated receptor-gamma gene are associated with severe overweight among obese women. J. Clin. Endocrinol. Metab. 84, 3708– 3712 (1999).

    CAS  PubMed  Google Scholar 

  28. Ek, J. et al. Homozygosity of the Pro12A1a variant of the peroxisome proliferation-activated receptor-gamma2 (PPAR-gamma2): divergent modulating effects on body mass index in obese and lean Caucasian men. Diabetologia 42, 892–895 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Mancini, F. P. et al. Pro12A1a substitution in the peroxisome proliferator-activated receptor-gamma2 is not associated with type 2 diabetes. Diabetes 48, 1466–1468 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  30. Barroso, I. et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.K. was supported by fellowships from the European Molecular Biology Organization and the Roche Research Foundation. Work in the author's laboratory is financed by the Swiss National Science Foundation, the Etat de Vaud, and Human Frontier Science Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Wahli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersten, S., Desvergne, B. & Wahli, W. Roles of PPARs in health and disease. Nature 405, 421–424 (2000). https://doi.org/10.1038/35013000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35013000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing