Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermally fluctuating superconductors in two dimensions

Abstract

In many two-dimensional superconducting systems1,2,3,4, such as Josephson-junction arrays, granular superconducting films, and the high-temperature superconductors, it appears that the electrons bind into Cooper pairs below a pairing temperature (TP) that is well above the Kosterlitz–Thouless temperature (TKT, the temperature below which there is long-range superconducting order5,6,7,8,9,10). The electron dynamics at temperatures between TKT and TP involve a complex interplay of thermal and quantum fluctuations, for which no quantitative theory exists. Here we report numerical results for this region, by exploiting its proximity to a T = 0 superconductor–insulator quantum phase transition11,12. This quantum critical point need not be experimentally accessible for our results to apply. We characterize the static, thermodynamic properties by a single dimensionless parameter, γ(T). Quantitative and universal results are obtained for the frequency dependence of the conductivity, which are dependent only upon γ(T) and fundamental constants of nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of H in equation (1).
Figure 2: Results of our numerical simulation of equations (3) — (8).

Similar content being viewed by others

References

  1. Rimberg, A. J. et al. Dissipation-driven superconductor-insulator transition in a two-dimensional Josephson-junction array. Phys. Rev. Lett. 78, 2632–2635 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Chervenak, J. A. & Valles, J. M. Observation of critical amplitude fluctuations near the two-dimensional superconductor-insulator transition. Phys. Rev. B 59, 11209– 11212 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Marković, N., Christiansen, C., Mack, A. M., Huber, W. H. & Goldman, A. M. Superconductor-insulator transition in two dimensions. Phys. Rev. B 60, 4320 –4328 (1999).

    Article  ADS  Google Scholar 

  4. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Uemura, Y. J. et al. Universal correlations between T c and n s/m (carrier density over effective mass) in high-T c cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Doniach, S. & Inui, M. Long-range Coulomb interactions and the onset of superconductivity in the high-T c materials. Phys. Rev. B 41, 6668– 6678 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Fisher, M. P. A., Grinstein, G. & Girvin, S. M. Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition. Phys. Rev. Lett. 64, 587–590 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Trivedi, N. & Randeria, M. Deviations from Fermi-liquid behavior above T c in 2D short coherence length superconductors. Phys. Rev. Lett. 75, 312– 315 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Emery, V. J. & Kivelson, S. A. Crossover and phase coherence in cuprate superconductors. J. Phys. Chem. Solids 59 , 1705–1710 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    Article  ADS  Google Scholar 

  12. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  13. Doniach, S. Quantum fluctuations in two dimensional superconductors. Phys. Rev. B 24, 5063–5070 ( 1981).

    Article  ADS  CAS  Google Scholar 

  14. Sachdev, S. Theory of finite-temperature crossovers near quantum critical points close to, or above, their upper-critical dimension. Phys. Rev. B 55, 142–163 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Sachdev, S. Universal relaxational dynamics near two-dimensional quantum critical points. Phys. Rev. B 59, 14054– 14073 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Khalatnikov, I. M. An Introduction to the Theory of Superfluidity (W. A. Benjamin, New York, 1965).

    Google Scholar 

  17. Popov, V. N. Functional Integrals in Quantum Field Theory and Statistical Physics (D. Reidel, Boston, 1983).

    Book  Google Scholar 

  18. Ambegaokar, V., Halperin, B. I., Nelson, D. R. & Siggia, E. D. Dissipation in two dimensional superfluids. Phys. Rev. Lett. 40, 783–786 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Damle, K. & Sachdev, S. Nonzero-temperature transport near quantum critical points. Phys. Rev. B 56, 8714–8733 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Herbut, I. F. Finite temperature transport at the superconductor-insulator transition in disordered systems. Phys. Rev. Lett. 81, 3916–3919 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Chubukov, A. V., Sachdev, S. & Ye, J. Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. Phys. Rev. B 49, 11919–11961 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Sudbø, A., Nguyen, A. K. & Hove, J. Anomalous scaling dimensions and critical points in type-II superconductors. Pre-print cond.mat/9907386 at 〈xxx.lanl.gov〉 (1999).

  24. Sachdev, S. & Ye, J. Universal quantum-critical dynamics of two-dimensional antiferromagnets. Phys. Rev. Lett. 69, 2411–2414 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Wagenblast, K.-H., van Otterlo, A., Schön, G. & Zimányi, G. T. Superconductor-insulator transition in a tunable dissipative environment. Phys. Rev. Lett. 79, 2730– 2733 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Dalidovich, D. & Phillips, P. Fluctuation conductivity in insulator-superconductor transitions with dissipation. Phys. Rev. Lett. 84, 737–740 ( 2000).

    Article  ADS  CAS  Google Scholar 

  27. Kawasaki, K. Kinetic equations and time correlation functions of critical fluctuations. Ann. Phys. (N.Y.) 61, 1– 56 (1970).

    Article  ADS  CAS  Google Scholar 

  28. Hohenberg, P. C., Siggia, E. D. & Halperin, B. I. Density-correlation function of liquid helium near Tλ in the symmetric planar model. Phys. Rev. B 14, 2865–2874 ( 1976).

    Article  ADS  CAS  Google Scholar 

  29. Grempel, D. Comment on “Low-temperature behavior of two-dimensional quantum anti-ferromagnets”. Phys. Rev. Lett. 61, 1041 ( 1988).

    Article  ADS  CAS  Google Scholar 

  30. Wagenblast, K.-H., van Otterlo, A., Schön, G. & Zimányi, G. T. New universality class at the superconductor-insulator transition. Phys. Rev. Lett. 78, 1779–1782 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Orenstein, D. Grempel and A. Sudbø for useful discussions, and the Division of Materials Theory of the National Science Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Sachdev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachdev, S., Starykh, O. Thermally fluctuating superconductors in two dimensions. Nature 405, 322–325 (2000). https://doi.org/10.1038/35012530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012530

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing