Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The diversity–stability debate

Abstract

There exists little doubt that the Earth's biodiversity is declining. The Nature Conservancy, for example, has documented that one-third of the plant and animal species in the United States are now at risk of extinction. The problem is a monumental one, and forces us to consider in depth how we expect ecosystems, which ultimately are our life-support systems, to respond to reductions in diversity. This issue — commonly referred to as the diversity–stability debate — is the subject of this review, which synthesizes historical ideas with recent advances. Both theory and empirical evidence agree that we should expect declines in diversity to accelerate the simplification of ecological communities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Ecotron experiment creates model multitrophic community assemblages containing plants, herbivores, parasitoids and decomposers in 16 different chambers.
Figure 2: Consumer–resource interactions.

References

  1. Riciardi, A. & Rasmussen, J. B. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220 –1222 (2000).

    Google Scholar 

  2. Reid, W. V. Strategies for conserving biodiversity. Environment 39, 16–43 (1997).

    Google Scholar 

  3. Levin, S. Fragile Dominion: Complexity and the Commons (Helix books, Reading, MA, 1999).

    Google Scholar 

  4. Lodge, D. Biological invasions: lessons for ecology. Trends Ecol. Evol. 8, 133–137 (1993).

    CAS  PubMed  Google Scholar 

  5. Cohen, A. & Carlton, J. T. Accelerating invasion rate in a highly invaded estuary. Science 279, 555 –558 (1998).

    ADS  CAS  PubMed  Google Scholar 

  6. Odum, E. P. Fundamentals of ecology (Saunders, Philadelphia, 1953 ).

    Google Scholar 

  7. Elton, C. S. Ecology of Invasions by Animals and Plants (Chapman & Hall, London, 1958).

    Google Scholar 

  8. MacArthur, R. H. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 ( 1955).

    Google Scholar 

  9. May, R. M. Stability and complexity in model ecosystems (Princeton Univ. Press, 1973).

    Google Scholar 

  10. Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228, 784 (1970).

    ADS  CAS  PubMed  Google Scholar 

  11. Pimm, S. L. & Lawton, J. H. On feeding on more than one trophic level. Nature 275, 542– 544 (1978).

    ADS  Google Scholar 

  12. Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981).

    ADS  Google Scholar 

  13. Armstrong, R. A. & McGehee, R. Competitive exclusion . Am. Nat. 115, 151–170 (1980).

    MathSciNet  Google Scholar 

  14. DeAngelis, D. & Waterhouse, J. C. Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr. 57, 1–21 (1987).

    Google Scholar 

  15. Michalski, J. & Arditi, R. in Advances in Environmental and Ecological Modelling (ed. Weill, A.), 1–20 (Elsevier, Paris,1999).

  16. Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    ADS  Google Scholar 

  17. McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature . Nature 395, 794–798 (1998).

    ADS  CAS  Google Scholar 

  18. Law, R., & Morton, D. Permanence and the assembly of ecological communities. Ecology 77, 762– 775 (1996).

    Google Scholar 

  19. Hastings, A. & Higgins. K. Persistence of transients in spatially structured ecological models. Science 263, 1133–1136 (1994).

    ADS  CAS  PubMed  Google Scholar 

  20. Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363– 365 (1994).

    ADS  Google Scholar 

  21. Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718 –720 (1996).

    ADS  CAS  Google Scholar 

  22. Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Google Scholar 

  23. Schapfer, F. & Schmid, B. Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecol. Applic. 9, 893–912 (1999).

    Google Scholar 

  24. Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264– 276 (1998).

    CAS  PubMed  Google Scholar 

  25. Tilman, D., Lehman, C. L. & Bristow, C. E. Diversity-stability relationships: statistical inevitability or ecological consequence. Am. Nat. 151, 277–282 (1998).

    CAS  PubMed  Google Scholar 

  26. Sankaran, M. & McNaughton, S. J. Determinants of biodiversity regulate compositional stability of communities. Nature 401, 691–693 (1999).

    ADS  CAS  Google Scholar 

  27. Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449– 460 (1997).

    ADS  PubMed  Google Scholar 

  28. Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300– 1302 (1997).

    CAS  Google Scholar 

  29. Hooper, D. U. & Vitousek, P. M. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302–1305 (1997).

    CAS  Google Scholar 

  30. Wardle, D. A. et al. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol. Monogr. 69, 535–568 ( 1999).

    Google Scholar 

  31. van der Heijden, M. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    ADS  CAS  Google Scholar 

  32. McNaughton, S. J. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr. 55, 259–294 (1985).

    Google Scholar 

  33. Lawton, J. H. Ecological experiments with model systems. Science 269, 328–331 (1995).

    ADS  CAS  PubMed  Google Scholar 

  34. McGrady-Steed, J., Harris, P. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 ( 1997).

    ADS  CAS  Google Scholar 

  35. McGrady-Steed, J. & Morin, P. J. Biodiversity, density compensation, and the dynamics of populations and functional groups . Ecology 81, 361–373 (2000).

    Google Scholar 

  36. Morin, P. J. & Lawler, S. P. Food web architecture and population dynamics: theory and empirical evidence. Annu. Rev. Ecol. System. 26, 505–529 ( 1995).

    Google Scholar 

  37. Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability . Nature 390, 507–509 (1997).

    ADS  CAS  Google Scholar 

  38. Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).

    Google Scholar 

  39. Lawton, J. H. & Brown, V. K. in Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.), 255– 270 (Springer, New York,1993).

  40. Yachi, S. & Loreau, M. Biodiversity and ecosystem functioning in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    ADS  CAS  PubMed  Google Scholar 

  41. Chesson, P. & Huntley, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 ( 1997).

    CAS  PubMed  Google Scholar 

  42. Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990).

    Google Scholar 

  43. Polis, G. A. Complex trophic interactions in deserts: an empirical critique of food web theory. Am. Nat. 138, 123– 155 (1991).

    Google Scholar 

  44. Polis, G. A. & Strong, D. Food web complexity and community dynamics. Am. Nat. 147, 813– 846 (1996).

    Google Scholar 

  45. Strong, D. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73, 747– 754 (1992).

    Google Scholar 

  46. Holt, R. D. in Multitrophic interactions (eds Begon, M., Gange, A. & Brown, V.) 333–350 (Chapman & Hall, London,1996).

  47. McCann, K. & Hastings, A. Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B 264 , 1249–1254 (1997).

    ADS  Google Scholar 

  48. Huxel, G. R. & McCann, K. Food web stability: the influence of trophic flows across habitats. Am. Nat. 152, 460–469 (1998).

    CAS  PubMed  Google Scholar 

  49. Post, D. M., Connors, E. & Goldberg, D. S. Prey preference by a top predator and the stability of linked food chains. Ecology 81, 8– 14 (2000).

    Google Scholar 

  50. Yodzis, P. & Innes, S. Body-size and consumer-resource dynamics . Am. Nat. 139, 1151–1175 (1992).

    Google Scholar 

  51. Chesson, J. The estimation and analysis of preference and its relationship to foraging models. Ecology 64, 1297– 1304 (1983).

    Google Scholar 

  52. Kokkoris, G. D., Troumbis, A. Y. & Lawton, J. H. Patterns of species interaction strength in assembled theoretical competition communities. Ecol. Lett. 2, 70–74 (1999).

    Google Scholar 

  53. Paine, R. T. Food-web analysis through field measurements of per capita interaction strengths . Nature 355, 73–75 (1992).

    ADS  Google Scholar 

  54. Fagan, W. F. & Hurd, L. E. Hatch density variation of a generalist arthropod predator: population consequences and community impact. Ecology 75, 2022–2032 ( 1994).

    Google Scholar 

  55. Goldwasser, L. & Roughgarden, J. Construction and analysis of a large Caribbean food web. Ecology 74, 1216–1223 (1993).

    Google Scholar 

  56. Raffaelli, D. G. & Hall, S. J. in Food Webs: Integration of Patterns & Dynamics (eds Polis, G. A. & Winemiller, K. O.) 185–191 (Chapman & Hall, New York, 1996).

    Google Scholar 

  57. Wootton, J. T. Estimates and tests of per capita interaction strength: diet abundance and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997).

    Google Scholar 

  58. Paine, R. T. Ecological determinism in the competition for space. Ecology 65, 1339–1348 (1984).

    Google Scholar 

  59. Berlow, E. Strong effects of weak interactions in ecological communities. Nature 398, 330–334 ( 1999).

    ADS  CAS  Google Scholar 

  60. Williamson, M. & Fitter, A. The varying success of invaders. Ecology 77, 1661– 1666 (1996).

    Google Scholar 

  61. Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467 (1999).

    ADS  Google Scholar 

  62. Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annu. Rev. Ecol. System. 29, 113–140 . (1998).

    Google Scholar 

  63. Reinthal, P. N. & Kling, G. W. in Theory and Application in Fish Feeding Ecology (eds Stouder, D. J., Fresh, K. L. & Feller, R.) 296–313 (Univ. South Carolina Press, 1994).

    Google Scholar 

  64. Fagan, W. F. Omnivory as a stabilizing feature of natural communities. Am. Nat. 150, 554–567 ( 1997).

    CAS  PubMed  Google Scholar 

  65. de Ruiter, P. C., Neutel, A. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257– 1260 (1995).

    ADS  CAS  PubMed  Google Scholar 

  66. Holyoak, M. & Sachdev, S. Omnivory and the stability of simple food webs. Oecologia 117, 413– 419 (1999).

    ADS  Google Scholar 

  67. Flaherty, D. Ecosystem trophic complexity and densities of the Williamette mite, Eotetranychus williamettei ewing (Acarina: Tetranychidae). Ecology 50, 911–916 (1969).

    Google Scholar 

  68. Morin, P. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80, 752– 760 (1999).

    Google Scholar 

  69. Luckinbill, L. S. Regulation, stability, and diversity in a model experimental microcosm. Ecology 60, 1098–1102 ( 1979).

    Google Scholar 

  70. DeAngelis, D. Dynamics of Nutrient Recycling and Food Webs (Chapman & Hall, New York, 1992).

    Google Scholar 

  71. Andersen, T. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks (Springer, New York, 1997).

    Google Scholar 

  72. Elser, J. J. & Urabe, J. The stoichiometry of consumer-driven nutrient recycling: theory, observations and consequences. Ecology 80, 735–751 ( 1999).

    Google Scholar 

  73. Harding, S. P. Food web complexity enhances community stability and climate regulation in a geophysiological model. Tellus 51B, 815 –829 (1999).

    ADS  Google Scholar 

Download references

Acknowledgements

This paper benefited from comments by D. Raffaelli. I also thank J. Rasmussen and P. Yodzis for conversations on this issue, and D. Kramer for providing a single comment that led me to a different viewpoint.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCann, K. The diversity–stability debate. Nature 405, 228–233 (2000). https://doi.org/10.1038/35012234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012234

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing