Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A scalable quantum computer with ions in an array of microtraps

Abstract

Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout1. So far, only a few systems have been identified as potentially viable quantum computer models—accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions2,3,4,5,6,7,8,9 or neutral atoms10,11,12, cavity quantum electrodynamics13,14,15 and nuclear magnetic resonance16,17) and solid state systems (using nuclear spins1,18, quantum dots19 and Josephson junctions20). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits21, rising to 100,000 if error correction22 is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic setup.
Figure 2: Scalable quantum computer.

Similar content being viewed by others

References

  1. DiVincenzo,D. P. Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 ( 1995).

    Article  ADS  CAS  Google Scholar 

  2. Cirac,J. I. & Zoller,P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091– 4094 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Monroe,C., Meekhof,D. M., King,B. E., Itano,W. M. & Wineland,D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Poyatos,J. F., Cirac,J. I. & Zoller, P. Quantum gates with hot trapped ions. Phys. Rev. Lett. 81, 1322–1325 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Steane,A. The ion trap quantum information processor. Appl. Phys. B 64, 623–642 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Turchette,Q. A. et al. Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81, 3631–3634 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Roos,Ch. et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Pre-print quant-ph/9909038 at 〈xxx.lanl.gov〉 (1999).

  8. Sorensen,A. & Molmer,K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971– 1974 (1999).

    Article  ADS  Google Scholar 

  9. Wineland,D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259 (1998).

    Article  CAS  Google Scholar 

  10. Jaksch,D., Briegel,H.-J., Cirac,J. I., Gardiner,C. W. & Zoller,P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975– 1978 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Brennen,G. K., Caves,C. M., Jessen,P. S. & Deutsch,I. H. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060–1063 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Calarco,T. et al. Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps. Pre-print quant-ph/9905013 at 〈xxx.lanl.gov〉 (1999).

  13. Pellizzari,T., Gardiner,S. A., Cirac,J. I. & Zoller,P. Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788– 3791 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Turchette,Q. A., Hood,C. J., Lange,W., Mabuchi,H. & Kimble,H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710– 4713 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Maître,X. et al. Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997).

    Article  ADS  Google Scholar 

  16. Cory,D. G., Fahmy,A. F. & Havel,T. F. Ensemble quantum computing by NMR spectroscopy. Proc. Natl Acad. Sci. USA 94, 1634– 1639 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Gershenfeld,N. A. & Chuang,I. L. Bulk spin-resonance quantum computation. Science 275, 350– 356 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  18. Kane,B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Loss,D. & DiVincenzo,D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120– 126 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Makhlin,Y. & Schön,G. Josephson-junction qubits with controlled couplings. Nature 398, 305– 307 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Beckman,D., Chari,A. N., Devabhaktuni, S. & Preskill,J. Efficient networks for quantum factoring. Phys. Rev. A 54, 1034–1063 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Steane,A. M. Efficient fault-tolerant quantum computing. Pre-print quant-ph/9809054 at 〈xxx.lanl.gov〉 (1998).

  23. DeVoe,R. G. Elliptical ion traps and trap arrays for quantum computation. Phys. Rev. A 58, 910–914 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Friebel,S., D'Andrea,C., Walz,J., Weitz,M. & Hänsch, T. W. CO2 laser optical lattice with cold rubidium atoms. Phys. Rev. A 57, R20– R23 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Lloyd,S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Blatt, D. Leifried and D. Wineland for comments. This work was supported by the Austria Science Foundation, TMR networks from the European Community, and the Institute for Quantum Information GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zoller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirac, J., Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000). https://doi.org/10.1038/35007021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35007021

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing