Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from U–Th dating against Northern Hemisphere forcing of the penultimate deglaciation

Abstract

Milankovitch proposed that summer insolation at mid-latitudes in the Northern Hemisphere directly causes the ice-age climate cycles1. This would imply that times of ice-sheet collapse should correspond to peaks in Northern Hemisphere June insolation. But the penultimate deglaciation has proved controversial because June insolation peaks 127 kyr ago whereas several records of past climate suggest that change may have occurred up to 15 kyr earlier2,3,4,5,6,7,8. There is a clear signature of the penultimate deglaciation in marine oxygen-isotope records. But dating this event, which is significantly before the 14C age range, has not been possible. Here we date the penultimate deglaciation in a record from the Bahamas using a new U-Th isochron technique. After the necessary corrections for α-recoil mobility of 234U and 230Th and a small age correction for sediment mixing, the midpoint age for the penultimate deglaciation is determined to be 135 ± 2.5 kyr ago. This age is consistent with some coral-based sea-level estimates, but it is difficult to reconcile with June Northern Hemisphere insolation as the trigger for the ice-age cycles. Potential alternative driving mechanisms for the ice-age cycles that are consistent with such an early date for the penultimate deglaciation are either the variability of the tropical ocean–atmosphere system or changes in atmospheric CO2 concentration controlled by a process in the Southern Hemisphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen-isotope stratigraphy for Bahamas core JPC152 on two different depth scales.
Figure 2: Isochrons and U-isotope ratios from the penultimate deglaciation.
Figure 3: Timing comparison of the marine δ18O record of deglaciation with data from elsewhere.

Similar content being viewed by others

References

  1. Milankovitch, M. in Handbuch der Klimatologie (eds Koppen, W. & Geiger, R.) 1–176 (Gebruder Borntraeger, Berlin, 1930).

    Google Scholar 

  2. Stirling, C. H., Esat, T. M., Lambeck, K. & McCulloch, M. T. Timing and duration of the Last Interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. 160, 745–762 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Stein, M. et al. TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochim. Cosmochim. Acta 57, 2541–2554 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Zhu, Z. R. et al. High-precision U-series dating of last interglacial events by mass spectrometry: Houtman Abrolhol Islands, western Australia. Earth Planet. Sci. Lett. 118, 281– 293 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Szabo, B. J., Ludwig, K. R., Muhs, D. R. & Simmons, K. R. Thorium-230 ages of corals and duration of the last interglacial sea-level high stand on Oahu, Hawaii. Science 266, 93–96 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Bard, E. et al. Pleistocene sea levels and tectonic uplift based on dating of corals from Sumba Island, Indonesia. Geophys. Res. Lett. 23 , 1473–1476 (1996).

    Article  ADS  Google Scholar 

  7. Esat, T. M., McCulloch, M. T., Chappell, J., Pillans, B. & Omura, A. Rapid fluctuations in sea level recorded at Huon Peninsula during the penultimate deglaciation. Science 283, 197–201 ( 1999).

    Article  CAS  Google Scholar 

  8. Gallup, C. D., Edwards, R. L. & Johnson, R. G. The timing of high sea levels over the past 200,000 years. Science 263, 796– 800 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Imbrie, J. et al. in Milankovitch and Climate (eds Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 269–305 (Reidel, Dordrecht, 1984).

    Google Scholar 

  10. Lorius, C. et al. A 150,000-year climatic record from Antarctic ice. Nature 316, 591–596 ( 1985).

    Article  ADS  CAS  Google Scholar 

  11. Jouzel, J. et al. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364, 407–412 (1993).

    Article  ADS  Google Scholar 

  12. Sowers, T. et al. A 135,000-year Vostok-Specmap common temporal framework. Paleoceanography 8, 737–766 (1993).

    Article  ADS  Google Scholar 

  13. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Ludwig, K. R. et al. Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein. Science 258, 284–287 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Winograd, I. J., Landwehr, J. M., Ludwig, K. R., Coplen, T. B. & Riggs, A. C. Duration and structure of the past four interglaciations. Quat. Res. 48, 141 –154 (1997).

    Article  Google Scholar 

  16. Slowey, N. C., Henderson, G. M. & Curry, W. B. Direct U-Th dating of marine sediments from the two most recent interglacial periods. Nature 383, 242–244 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Henderson, G. M. & Slowey, N. C. U-Th isochron dating of the marine oxygen-isotope record. Mineral. Mag. A 62, 602–603 (1998).

    Article  ADS  Google Scholar 

  18. Burns, S. & Neumann, A. C. Pelagic sedimentation on an inactive gullied slope, Northwest Providence Channel, Bahamas. Mar. Geol. 77, 277–286 ( 1987).

    Article  ADS  Google Scholar 

  19. Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345, 405–410 ( 1990).

    Article  ADS  CAS  Google Scholar 

  20. Henderson, G. M., Slowey, N. C. & Haddad, G. A. Fluid flow through carbonate platforms: Constraints from 234U/238U and Cl- in Bahamas pore-waters. Earth Planet. Sci. Lett. 169, 99–111 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Lambeck, K. & Nakada, M. Constraints on the age and duration of the last interglacial period and on sea-level variations. Nature 357, 125–128 ( 1992).

    Article  ADS  Google Scholar 

  22. Stirling, C. H., Esat, T. M., McCulloch, M. T. & Lambeck, K. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the last Interglacial. Earth Planet. Sci. Lett. 135, 115–130 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 change. Paleoceanography 13, 352–364 ( 1998).

    Article  ADS  Google Scholar 

  24. Barnola, J. M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. CO2-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating. Tellus B 43, 83– 90 (1991).

    Article  ADS  Google Scholar 

  25. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: Pacemaker of the ice ages. Science 194, 1121– 1132 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Kim, S. J., Crowley, T. J. & Stossel, A. Local orbital forcing of Antarctic climate change during the Last Interglacial. Science 280, 728– 730 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Clement, A., Seager, R. & Cane, M. Orbital controls on ENSO and the tropical climate. Paleoceanography 14, 441–456 (1999).

    Article  ADS  Google Scholar 

  28. Henderson, G. M., Cohen, A. S. & O'Nions, R. K. 234U/238U ratios and 230Th ages for Hateruma Atoll corals: implications for coral diagenesis and seawater 234U/238U ratios. Earth Planet. Sci. Lett. 115, 65–73 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Ivanovich, M. & Harmon, R. S. Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences (Oxford Univ. Press, 1992).

    Google Scholar 

  30. Henderson, G. M., Lindsay, F. & Slowey, N. C. Variation in bioturbation with water depth on marine slopes: A study on the slopes of the Little Bahamas Bank. Mar. Geol. 160, 105–118 ( 1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Schrag, R. Anderson, N. Shackleton and T. Crowley for discussion and comments, and M. Yeager for technical assistance. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon M. Henderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, G., Slowey, N. Evidence from U–Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404, 61–66 (2000). https://doi.org/10.1038/35003541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003541

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing