Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Postsaccadic visual references generate presaccadic compression of space

Abstract

With every rapid gaze shift (saccade), our eyes experience a different view of the world. Stable perception of visual space requires that points in the new image are associated with corresponding points in the previous image. The brain may use an extraretinal eye position signal to compensate for gaze changes1,2, or, alternatively, exploit the image contents to determine associated locations3,4. Support for a uniform extraretinal signal comes from findings that the apparent position of objects briefly flashed around the time of a saccade is often shifted in the direction of the saccade5,6,7,8,9. This view is challenged, however, by observations that the magnitude4,10 and direction11 of the displacement varies across the visual field. Led by the observation that non-uniform displacements typically occurred in studies conducted in slightly illuminated rooms4,7,10,11,12,13, here we determine the dependence of perisaccadic mislocalization on the availability of visual spatial references at various times around a saccade. We find that presaccadic compression11 occurs only if visual references are available immediately after, rather than before or during, the saccade. Our findings indicate that the visual processes of transsaccadic spatial localization use mainly postsaccadic visual information.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perceived location of a flashed bar at position -2.6° (green), +2.6° (black), +10° (blue) and +13° (red) as a function of time relative to the onset of a saccade from -6.4° to +6.4°.
Figure 2: Perceived shift and compression as a function of time in the presence (blue) and absence (red) of visual references.
Figure 3: Magnitude of presaccadic compression for different presentation times of visual references.

Similar content being viewed by others

References

  1. von Helmholtz, H. Handbuch der Physiologischen Optik (Leopold Voss, Hamburg, 1896).

    MATH  Google Scholar 

  2. Von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–476 (1950).

    Article  ADS  Google Scholar 

  3. MacKay, D. M. Mislocation of test stimuli during saccadic image displacement. Nature 227, 731–733 (1970).

    Article  ADS  CAS  Google Scholar 

  4. O'Regan, J. K. Retinal versus extraretinal influences in flash localization during saccadic eye movements in the presence of a visual background. Percept. Psychophys. 36, 1–14 (1984).

    Article  CAS  Google Scholar 

  5. Matin, L. & Pearce, D. G. Visual perception of direction for stimuli during voluntary saccadic eye movements. Science 148, 1485–1488 (1965).

    Article  ADS  CAS  Google Scholar 

  6. Honda, H. Perceptual localizaton of visual stimuli flashed during saccades. Percept. Psychophys. 45, 162–174 (1989).

    Article  CAS  Google Scholar 

  7. Dassonville, P., Schlag, J. & Schlag-Rey, M. The use of egocentric and exocentric location cues in saccadic programming. Vision Res. 35, 2191–2199 (1995).

    Article  CAS  Google Scholar 

  8. Bockisch, C. & Miller, J. M. Different motor systems use similar damped extraretinal eye position information. Vision Res. 39, 1025–1038 (1999).

    Article  CAS  Google Scholar 

  9. Cai, R. H., Pouget, A., Schlag-Rey, M. & Schlag, J. Perceived geometrical relationships affected by eye-movement signals. Nature 386, 601–604 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Bischof, N. & Kramer, E. Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. Psychologische Forschung 32, 185–218 (1968).

    Article  CAS  Google Scholar 

  11. Ross, J., Morrone, M. C. & Burr, D. C. Compression of visual space before saccades. Nature 386, 598–601 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Honda, H. Saccade-contingent displacement of apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Res. 33, 709–716 (1993).

    Article  CAS  Google Scholar 

  13. Miller, J. M. & Bockisch, C. Where are the things we see? Nature 386, 550–551 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Krekelberg, B. & Lappe, M. A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Res. 40, 201–215 (2000).

    Article  CAS  Google Scholar 

  15. Deubel, H., Schneider, W. X. & Bridgeman, B. Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Res. 36, 985–996 (1996).

    Article  CAS  Google Scholar 

  16. Deubel, H., Bridgeman, B. & Schneider, W. X. Immediate post-saccadic information mediates space constancy. Vision Res. 38, 3147–3159 (1998).

    Article  CAS  Google Scholar 

  17. Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Lünenburger and M. Klar for their help. Financial support from the Human Frontier Science Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lappe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappe, M., Awater, H. & Krekelberg, B. Postsaccadic visual references generate presaccadic compression of space. Nature 403, 892–895 (2000). https://doi.org/10.1038/35002588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002588

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing