Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduction in the surface energy of liquid interfaces at short length scales

Abstract

Liquid–vapour interfaces, particularly those involving water, are common in both natural and artificial environments. They were first described as regions of continuous variation of density1, caused by density fluctuations within the bulk phases2,3,4. In contrast, the more recent capillary-wave model5,6 assumes a step-like local density profile across the liquid–vapour interface, whose width is the result of the propagation of thermally excited capillary waves. The model has been validated for length scales of tenths of micrometres and larger7,8, but the structure of liquid surfaces on submicrometre length scales—where the capillary theory is expected to break down—remains poorly understood. Here we report grazing-incidence X-ray scattering experiments that allow for a complete determination of the free surface structure and surface energy for water and a range of organic liquids. We observe a large decrease of up to 75% in the surface energy of submicrometre waves that cannot be explained by capillary theory, but is in accord with the effects arising from the non-locality of attractive intermolecule interactions as predicted by a recent density functional theory9. Our data, and the results of comparable measurements on liquid solutions, metallic alloys, surfactants, lipids and wetting films should thus provide a stringent test for any new theories that attempt to describe the structure of liquid interfaces with nanometre-scale resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the experiment.
Figure 2: Scattering at the liquid water–vapour interface.
Figure 3: Wavevector dependent surface energy normalized to the macroscopic surface tension γ(q)/γ.

Similar content being viewed by others

References

  1. van der Waals, J. D. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Verh. Konink. Akad. Weten. Amsterdam (Sect. 1) 1 (1893). English translation by Rowlinson, J. S. J. Stat. Phys. 20, 197–244 (1979).

    Google Scholar 

  2. Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity Vol. 8 (International Series of Monographs on Chemistry, Oxford Univ. Press, 1982).

    Google Scholar 

  3. Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. i. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958).

    Article  ADS  CAS  Google Scholar 

  4. Fisk, S. & Widom, B. Structure and free energy of the interface between fluid phases in equilibrium near the critical point. J. Chem. Phys. 50, 3219–3227 (1960).

    Article  ADS  Google Scholar 

  5. Buff, F. P., Lovett, R. A. & Stillinger, R. H. Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621–623 (1965).

    Article  ADS  Google Scholar 

  6. Gelfand, M. P. & Fisher, M. E. Finite-size effects in fluid interfaces. Physica A 166, 1–74 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  7. Loudon, R. in Modern Problems in Condensed Matter Sciences (eds Agranovich, V. M. & Loudon, R.) Vol. 9, 589–638 (North-Holland Physics, Amsterdam, 1984).

    Google Scholar 

  8. Sanyal, M. K., Sinha, S. K., Huang, K. G. & Ocko, B. M. X-ray scattering study of capillary-wave fluctuations at a liquid surface. Phys. Rev. Lett. 66, 628–631 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Mecke, K. & Dietrich, S. Effective hamiltonian for liquid-vapor interfaces. Phys. Rev. E 59, 6766–6784 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Weeks, J. D. Structure and thermodynamics of the liquid-vapor interface. J. Chem. Phys. 67, 3106–3121 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Kayser, R. F. Effect of capillary waves on surface tension. Phys. Rev. A 33, 1948–1956 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Sengers, J. V. & van Leeuwen, J. M. J. Capillary waves of a vapor-liquid interface near the critical temperature. Phys. Rev. A 39, 6346–6355 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Tolman, R. C. J. The effect of droplet size on surface tension. J. Chem. Phys. 17, 333–337 (1949).

    Article  ADS  CAS  Google Scholar 

  14. van Giessen, A. E., Blokhuis, E. M. & Bukman, D. J. Mean field curvature corrections to the surface tension. J. Chem. Phys. 108, 1148–1156 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Meunier, J. Liquid interfaces: role of the fluctuations and analysis of ellipsometry and reflectivity measurements. J. Phys. 48, 1819–1831 (1987).

    Article  CAS  Google Scholar 

  16. Braslau, A. et al. Surface roughness of water measured by x-ray reflectivity. Phys. Rev. Lett. 54, 114–117 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Rice, S. A. X-ray reflection from liquids. Nature 316, 108 (1985).

    Article  ADS  Google Scholar 

  18. Daillant, J., Bosio, L., Harzallah, B. & Benattar, J. J. Structural properties and elasticity of amphiphilics on water. J. Phys. II 1, 149–170 (1991).

    CAS  Google Scholar 

  19. Sinha, S. K., Sirota, E. B. & Garoff, S. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297–2311 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Daillant, J. & Bélorgey, O. Surface scattering of x-rays in thin films. i. Theoretical treatment. J. Chem. Phys. 97, 5824–5836 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Dietrich, S. & Haase, A. Scattering of x-rays and neutrons at interfaces. Phys. Rep. 260, 1–138 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Fukuto, M. et al. X-ray measurements of noncapillary spatial fluctuations from a liquid surface. Phys. Rev. Lett. 81, 3455–3458 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Tostmann, H. et al. Surface structure of liquid metals and the effect of capillary waves: x-ray studies on liquid indium. Phys. Rev. B 59, 783–791 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Gourier, C. et al. Bending energy of amphiphilic films at the nanometer scale. Phys. Rev. Lett. 78, 3157–3160 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Napiórkowski, M. & Dietrich, S. Structure of the effective hamiltonian for liquid-vapor interfaces. Phys. Rev. A 47, 1836–1849 (1993).

    ADS  Google Scholar 

  26. Stecki, J. Extended capillary wave theory and the ellipsometric coefficient. J. Chem. Phys. 109, 5002–5007 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Magli, R., Barocchi, F., Chieux, P. & Fontana, R. Experimental determination of the long-range potential of argon pairs by means of small-angle neutron scattering. Phys. Rev. Lett. 77, 846–848 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Blot, P. Feder and H. Gleyzolle for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Daillant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fradin, C., Braslau, A., Luzet, D. et al. Reduction in the surface energy of liquid interfaces at short length scales. Nature 403, 871–874 (2000). https://doi.org/10.1038/35002533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002533

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing