Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supernova explosions in the Universe

Abstract

During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (1051, or 2.5 × 1028 megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the γ-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sequence of events in the collapse of a stellar core to a nascent neutron star.
Figure 2: The effective brightness of supernovae with redshift, and how those data are used to reveal cosmological parameters.

Similar content being viewed by others

References

  1. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. 101, 181–235 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Nomoto, K. & Hashimoto, M. Pre-supernova evolution of massive stars. Phys. Rep. 163, 13– 36 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Bethe, H. A., Brown, G. E., Applegate, J. & Lattimer, J. M. Equation of state in the gravitational collapse of stars. Nucl. Phys. A324, 487–533 ( 1979).

    Article  ADS  CAS  Google Scholar 

  4. Taylor, J. H. & Cordes, J. M. Pulsar distances and the galactic distribution of free electrons. Astrophys. J. 411, 674–684 (1993).

    Article  ADS  Google Scholar 

  5. Nomoto, K. Evolution of 8-10 solar mass stars toward electron capture supernovae. I—Formation of electron-degenerate O + Ne + Mg cores. Astrophys. J. 277, 791–805 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565– 586 (1999).

    Article  ADS  Google Scholar 

  7. Riess, A. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  8. Tueller, J. et al. Observations of gamma-ray line profiles fro SN 1987A. Astrophys. J. 351, L41–L44 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Arnett, W. D., Bahcall, J. N., Kirshner, R. P. & Woosley, S. E. Supernova 1987A. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Woosley, S. E. & Hoffman, R. D. The alpha-process and the r-process. Astrophys. J. 395, 202– 239 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Iyudin, A. F. et al. Emission from 44Ti associated with a previously unknown galactic supernova. Nature 396, 142–144 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Burbidge, E., Burbidge, G., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).

    Article  ADS  Google Scholar 

  13. Colgate, S. A. & Johnson, H. J. Hydrodynamic origin of cosmic rays. Phys. Rev. Lett. 5, 235– 238 (1960).

    Article  ADS  Google Scholar 

  14. Burrows, A. & Mazurek, T. J. Postshock neutrino transport and electron capture in stellar collapse. Astrophys. J. 259, 330–340 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Bruenn, S. W. Stellar core collapse—Numerical model and infall epoch. Astrophys. J. Suppl. 58, 771–841 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Colgate, S. A. & White, R. H. The hydrodynamic behavior of supernovae explosions. Astrohys. J. 143, 626– 681 (1966).

    Article  ADS  CAS  Google Scholar 

  17. Bethe, H. E. & Wilson, J. R. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14–23 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Wilson, J. R. in Numerical Astrophysics (eds Centrella, J. M., LeBlanc, J. M. & Bowers, R. L.) 422–435 (Jones & Bartlett, Boston, 1985).

    Google Scholar 

  19. Burrows, A. & Lattimer, J. M. Convection and the early evolution of neutron stars. Phys. Rep. 925, 51– 62 (1988).

    Article  ADS  Google Scholar 

  20. Burrows, A. & Lattimer, J. M. The birth of neutron stars. Astrophys. J. 307, 178–196 (1986).

    Article  ADS  Google Scholar 

  21. Bionta, R. M. et al. Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Phys. Rev. Lett. 58, 1494–1496 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Hirata, K. et al. Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 58, 1490–1493 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Burrows, A. Supernova neutrinos. Astrophys. J. 334, 891–908 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Totani, T., Sato, K., Dalhed, H. E. & Wilson, J. R. Future detection of supernova neutrino burst and explosion mechanism. Astrophys. J. 496, 216–225 ( 1998).

    Article  ADS  CAS  Google Scholar 

  25. Koshiba, M. The Kamiokande Detector. Phys. Rep. 220, 229–231 (1992).

    Article  ADS  Google Scholar 

  26. Ewan, G. T. et al. Sudbury Neutrino Observatory Proposal (Report SNO-87-12, 1987).

    Google Scholar 

  27. Bellotti, E. Instrum. Meth. A264, 5–9 (1988).

    ADS  Google Scholar 

  28. LVD Collaboration. Nucl. Instrum. Meth. A264, 5–21 ( 1988).

    Google Scholar 

  29. Icarus Collaboration. Icarus Proposal (LNGS Note 94/99-I, INFN preprint, GranSasso Laboratory, 1994).

    Google Scholar 

  30. Mayle, R. & Wilson, J. R. Supernovae from collapse of oxygen-magnesium-neon cores. Astrophys. J. 334, 909– 926 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Burrows, A., Hayes, J. & Fryxell, B. A. On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830– 850 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Messer, O. E. B., Mezzacappa, A., Bruenn, S. W. & Guidry, M. W. A comparison of boltzmann and multigroup flux-limited diffusion neutrino transport during the postbounce shock reheating phase in core-collapse supernovae. Astrophys. J. 507, 353–360 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Burrows, A. & Goshy, J. A theory of supernova explosions. Astrophys. J. 416, L75–L78 (1993).

    Article  ADS  Google Scholar 

  34. Fryer, C. & Heger, A. Core-collapse simulations of rotating stars. http://xxx.lanl.gov/archive/astro-ph/9907433 ( 1999).

  35. Turatto, M. et al. The peculiar type II supernova 1997D: A case for a very low 56Ni mass. Astrophys. J. 498, L129 –L133 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Sollerman, J., Cumming, R. J. & Lundquist, P. A very low mass of 56Ni in the ejecta of SN 1994W. Astrophys. J. 493, 933– 939 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Bethe, H. A. & Brown, G. E. A scenario for a large number of low-mass black holes in the galaxy. Astrophys. J. 423 , 659–664 (1995).

    ADS  Google Scholar 

  38. Brown, G. E., Weingartner, J. C. & Wijers, R. A. M. J. On the formation of low-mass black holes in massive binary stars. Astrophys. J. 463, 297–304 (1996).

    Article  ADS  CAS  Google Scholar 

  39. Herant, M., Benz, W., Hix, R., Fryer, C. & Colgate, S. A. Inside the supernova: A powerful convective engine. Astrohys. J. 435, 339– 361 (1994).

    Article  ADS  CAS  Google Scholar 

  40. Janka, H.-T. & Müller, E. Neutrino heating, convection, and the mechanism of Type-II supernova explosions. Astron. Astrophys. 306, 167–198 ( 1991).

    ADS  Google Scholar 

  41. Fryxell, B. A., Müller, E. & Arnett, D. Instabilities and clumping in SN 1987A. I—Early evolution in two dimensions. Astrophys. J. 367, 619–634 (1991).

    Article  ADS  CAS  Google Scholar 

  42. Wooden, D. H. et al. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns—Time history of the dust continuum and line emission. Astrophys. J. Suppl. 88, 477–507 ( 1993).

    Article  ADS  CAS  Google Scholar 

  43. Wang, L., Wheeler, J. C. & Höflich, P. Polarimetry of the type Ia supernova SN 1996X. Astrophys. J. 476, L27–L30 (1997).

    Article  ADS  Google Scholar 

  44. Lyne, A. & Lorimer, D. R. High birth velocities of radio pulsars. Nature 369, 127– 129 (1994).

    Article  ADS  Google Scholar 

  45. Cordes, J. M., Romani, R. W. & Lundgren, S. C. The Guitar nebula—A bow shock from a slow-spin, high-velocity neutron star. Nature 362, 133–135 (1993).

    Article  ADS  Google Scholar 

  46. Fryer, C., Burrows, A. & Benz, W. Population syntheses for neutron star systems with intrinsic kicks. Astrophys. J. 496, 333–351 (1998).

    Article  ADS  Google Scholar 

  47. Piro, L. in Joint European and National Astronomical Meeting, JENAM-97, 6th European and 3rd Hellenic Astronomical Conference 284–287 (Univ. Thessaloniki, 1997).

    Google Scholar 

  48. Harrison, T. E. & McNamara, B. J. The optical counterparts of gamma-ray bursts. Nature 396, 233–236 (1998).

    Article  ADS  Google Scholar 

  49. Costa, E. et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783 –785 (1997).

    Article  ADS  CAS  Google Scholar 

  50. van Paradijs, J. et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686 –689 (1997).

    Article  ADS  CAS  Google Scholar 

  51. Metzger, M. R. et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 387, 879–881 (1997).

    Article  ADS  Google Scholar 

  52. Paczynski, B. Gamma-ray burst-supernova relation. http://xxx.lanl.gov/archive/astro-ph/9909048 (1999).

  53. Reichart, D. E. GRB 970228 revisited: Evidence for a supernova in the light curve and late spectral energy distribution of the afterglow. Astrophys. J. 521, L111–L115 (1999).

    Article  ADS  Google Scholar 

  54. Bloom, J. S. et al. The unusual afterglow of the gamma-ray burst of 26 March 1998 as evidence for a supernova connection. Nature 401, 453–456 (1999).

    Article  ADS  CAS  Google Scholar 

  55. Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670– 672 (1998).

    Article  ADS  CAS  Google Scholar 

  56. Woosley, S. E., Eastman, R. G. & Schmidt, B. P. Gamma-ray bursts and type Ic supernova SN 1998bw. Astrophys. J. 516, 788– 796 (1999).

    Article  ADS  CAS  Google Scholar 

  57. Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993).

    Article  ADS  CAS  Google Scholar 

  58. Wheeler, J C., Yi, I., Höflich, P. & Wang, L. Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts. http://xxx.lanl.gov/archive/astro-ph/9909293 (1999).

  59. Ostriker, J. P. & Gunn, J. Do pulsars make supernovae? Astrophys. J. 164, L95– L96 (1971).

    Article  ADS  Google Scholar 

  60. MacFadyen, A. & Woosley, S. E. Collapsars: Gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999).

    Article  ADS  CAS  Google Scholar 

  61. Schmidt, B. P. et al. The high-Z supernova search: Measuring deceleration and global curvature of the universe using type Ia supernovae. Astrophys. J. 507, 46–63 ( 1998).

    Article  ADS  Google Scholar 

  62. Hamuy, M. BVRI light curves for 29 type Ia supernovae. Astron. J. 112, 2408–2437 (1996).

    Article  ADS  Google Scholar 

  63. Turner, M. S. & Tyson, J. A. Cosmology at the millennium. Rev. Mod. Phys. 71, 145 (1999 ).

    Article  ADS  Google Scholar 

  64. Steinhardt, P. J., Zlatev, I. & Wang, L. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999).

    Article  ADS  Google Scholar 

  65. Phillips, M. M. The absolute magnitudes of Type Ia supernovae. Astrophys. J. 413, L105–L108 (1993).

    Article  ADS  Google Scholar 

  66. Suntzeff, N. et al. Optical light curve of the type Ia supernova 1998bu in M96 and the supernova calibration of the hubble constant. Astron. J. 117, 1175–1184 ( 1999).

    Article  ADS  Google Scholar 

  67. Gibson, B. K. et al. The HST key project on the extragalactic distance scale XXV. A recalibration of cepheid distances to type Ia supernovae and the value of the hubble constant. http://xxx.lanl.gov/archive/astro-ph/9908149 (1999).

  68. Kennicutt, R. C. Jr., Freedman, W. L. & Mould, J. R. Measuring the hubble constant with the Hubble space telescope. Astron. J. 110, 1476–1491 (1995).

    Article  ADS  Google Scholar 

  69. Sakai, S. et al. The Hubble space telescope key project on the extragalactic distance scale XXIV: The calibration of Tully-Fisher relations and the value of the hubble constant. http://xxx.lanl.gov/archive/astro-ph/9909269 ( 1999).

  70. Chaboyer, B., Demarque, P., Kernan, P. J. & Krauss, L. M. A lower limit on the age of the universe. Science 271 , 957–961 (1996).

    Article  ADS  CAS  Google Scholar 

  71. Chaboyer, B., Demarque, P., Kewrnan, P. J. & Krauss, L. M. The age of globular clusters in light of Hipparcos: Resolving the age problem? Astrophys. J. 494, 96– 110 (1998).

    Article  ADS  Google Scholar 

  72. Cowan, J. et al. R-process abundances and chronometers in metal-poor stars. Astrophys. J. 521, 194–205 (1999).

    Article  ADS  CAS  Google Scholar 

  73. Aguirre, A. Dust versus cosmic acceleration. Astrophys. J. 512, L19–L22 (1999).

    Article  ADS  Google Scholar 

  74. Umeda, H., Nomoto, K., Kobayashi, C., Hachisu, I. & Kato, M. The origin of the diversity of type Ia supernovae and the environmental effects. Astrophys. J. 522, L43– L47 (1999).

    Article  ADS  CAS  Google Scholar 

  75. Riess, A. G., Filippenko, A. V., Li, W. & Schmidt, B. P. An indication of evolution of type Ia supernovae from their risetimes. http://xxx.lanl.gov/archive/astro-ph/9907038 (1999).

  76. Madau, P., Della Valle, M. & Panagia, N. On the evolution of the cosmic supernova rates. Mon. Not. R. Astron. Soc. 297, L17– L22 (1998).

    Article  ADS  Google Scholar 

  77. Aschenbach, B. Discovery of a young nearby supernova remnant. Nature 396, 141–142 (1998).

    Article  ADS  CAS  Google Scholar 

  78. Ashworth, W. B. A probably Flamsteed observation of the cassiopeia-A supernova. J. Hist. Astron. 11, 1 (1980).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank A. Riess, B. Schmidt, S. Perlmutter, P. Pinto, T. Thompson, A. MacFadyen, C. Fryer and D. Frail for conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Burrows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrows, A. Supernova explosions in the Universe. Nature 403, 727–733 (2000). https://doi.org/10.1038/35001501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001501

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing