Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The organizer factors Chordin and Noggin are required for mouse forebrain development

Abstract

In mice, there is evidence suggesting that the development of head and trunk structures is organized by distinctly separated cell populations1,2. The head organizer is located in the anterior visceral endoderm (AVE) and the trunk organizer in the node and anterior primitive streak. In amphibians, Spemann's organizer, which is homologous to the node, partially overlaps with anterior endoderm cells expressing homologues of the AVE markers cerberus, Hex and Hesx1 (refs 3,4,5,6). For mice, this raises the question of whether the AVE and node are independent of each other, as suggested by their anatomical separation, or functionally interdependent as is the case in amphibians3,4,5. Chordin and Noggin are secreted bone morphogenetic protein (BMP) antagonists7,8 expressed in the mouse node, but not in the AVE. Here we show that mice double-homozygous mutants that are for chordin and noggin display severe defects in the development of the prosencephalon. The results show that BMP antagonists in the node and its derivatives are required for head development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of chordin and noggin in the node and phenotype of double mutants.
Figure 2: Loss of forebrain in chordin;noggin double mutants.
Figure 3: Molecular marker analyses of double chordin;noggin mutants during early development.

Similar content being viewed by others

References

  1. Beddington, R. S. P. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).

    Article  CAS  Google Scholar 

  2. Tam, P. L. & Behringer, R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev. 68, 3–25 (1997).

    Article  CAS  Google Scholar 

  3. Bouwmeester, T., Kim, S. H., Sasai, Y., Lu, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Piccolo, S. et al. Cerberus induces head structures by binding to and inhibiting Nodal, BMP and Wnt signals in the extracellular space. Nature 397, 707–710 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Zorn, A. M., Butler, K. & Gurdon, J. B. Anterior endomesoderm specification in Xenopus by Wnt/β-catenin and TGF-β signalling pathways. Dev. Biol. 209, 282–297 (1999).

    Article  CAS  Google Scholar 

  6. Zaraisky, A. G. et al. The homeobox-containing gene XANF-1 may control development of the Spemann organizer. Development 121, 3839–3847 (1995).

    CAS  PubMed  Google Scholar 

  7. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of Chordin to BMP-4. Cell 86, 589– 598 (1996).

    Article  CAS  Google Scholar 

  8. Zimmerman, L. B., De Jesús-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 ( 1996).

    Article  CAS  Google Scholar 

  9. McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 ( 1998).

    Article  CAS  Google Scholar 

  10. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Oliver, G. et al. Six-3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121 , 4045–4055 (1995).

    CAS  PubMed  Google Scholar 

  12. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    Article  CAS  Google Scholar 

  13. Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genet. 19, 125–133 (1998).

    Article  CAS  Google Scholar 

  14. Shawlot, W. & Behringer, R. R. Requirement for Lim1 in head-organizer function. Nature 374, 425–430 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Ang, S. L. & Rossant, J. HNF-3β is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    Article  CAS  Google Scholar 

  16. Rhinn, M. et al. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125, 845–856 ( 1998).

    CAS  PubMed  Google Scholar 

  17. Dufort, D., Schwartz, L., Harpal, K. & Rossant, J. The transcription factor HNF3β is required in visceral endoderm for normal primitive streak morphogenesis. Development 125, 3015– 3025 (1998).

    CAS  PubMed  Google Scholar 

  18. Belo, J. A. et al. Cerberus-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45–57 (1997).

    Article  CAS  Google Scholar 

  19. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  Google Scholar 

  20. Litingtung, Y., Lei, L., Westphal, H. & Chiang, C. Sonic hedgehog is essential for the development of the foregut. Nature Genet. 20, 58–61 ( 1998).

    Article  CAS  Google Scholar 

  21. Motoyama, J. et al. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nature Genet. 20, 54–57 (1998).

    Article  CAS  Google Scholar 

  22. Meyers, E. N. & Martin, G. R. Differences in left–right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285, 403–406 ( 1999).

    Article  CAS  Google Scholar 

  23. Hammerschmidt, M., Serbedzija, G. N. & McMahon, A. P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452– 2461 (1996).

    Article  CAS  Google Scholar 

  24. Schulte-Merker, S., Lee, K. J., McMahon, A. P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Lyons, K. M., Hogan, B. L. M. & Robertson, E. J. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev. 50, 71–83 (1995).

    Article  CAS  Google Scholar 

  26. Arkell, R. & Beddington, R. S. P. BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124, 1–12 ( 1997).

    CAS  PubMed  Google Scholar 

  27. Solloway, M. J. & Robertson, E. J. Early embryonic lethality in Bmp5; Bmp7 double-mutant mice suggests functional redundancy within the 60A subgroup. Development 128, 1753–1768 (1999).

    Google Scholar 

  28. Golden, J. A et al. Ectopic bone morphogenetic proteins 5 and 4 in the chicken forebrain lead to cyclopia and holoprosencephaly. Proc. Natl Acad. Sci. USA 54, 623–634 ( 1999).

    MathSciNet  Google Scholar 

  29. Furuta, Y., Piston, D. W. & Hogan, B. L. M. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  30. Piccolo, S. et al. Cleavage of Chordin by the Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Beddington, G. Oliver, D. Wilkinson and A. Joyner for gifts of plasmids, K. Woo, C. De Robertis, B. Yoon and A. Burnett for help with genotyping, and K. Lyons, G. Weinmaster, E. Delot and members of our laboratories for comments on the manuscript. This work was supported by the HHMI, NIH, MRC Canada, Whitehead Foundation and the Norman Sprague Chair.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachiller, D., Klingensmith, ., Kemp, C. et al. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403, 658–661 (2000). https://doi.org/10.1038/35001072

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001072

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing