Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere

Abstract

Jupiter's dominant large-scale weather patterns (dimensions 10,000 km) are zonal jets and long-lived ovals. The jets have been flowing east and west at constant speeds of up to 180 m s-1 for over 100 years1,2,3. These jets receive energy from small-scale eddies, which pump1 eastward momentum into the eastward jets and westward momentum into the westward jets. This momentum transfer was predicted by numerical models4 before it was observed on Jupiter1. The large ovals roll between the jets in an anticyclonic direction5—clockwise in the northern hemisphere and counterclockwise in the southern hemisphere—where they regularly assimilate small anticyclonic eddies5,6. But from where the eddies receive their energy has been an open question. Here we argue that the eddies, which ultimately drive both the jets and the ovals, receive their energy from moist convection. This hypothesis is consistent with observations of jovian lightning7,8,9, which is an indicator of moist convection10,11. It also explains the anticyclonic rotation and poleward drift of the eddies5, and suggests patterns of upwelling and downwelling that resemble the patterns of large-scale axisymmetric overturning in the Earth's atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Belts and zones in Jupiter's atmosphere.

Similar content being viewed by others

References

  1. Ingersoll, A. P. et al. Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. 86, 8733–8743 (1981).

    Article  ADS  Google Scholar 

  2. Limaye, S. S. Jupiter: New estimates of the mean zonal flow at the cloud level. Icarus 65, 335–352 (1986).

    Article  ADS  Google Scholar 

  3. Vasavada, A. R. et al. Galileo imaging of Jupiter's atmosphere: The Great Red Spot, equatorial region, and White Ovals. Icarus 135, 265–275 (1998).

    Article  ADS  Google Scholar 

  4. Williams, G. P. Planetary circulations: Barotropic representation of jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399–1426 (1978).

    Article  ADS  Google Scholar 

  5. Mac Low, M. -M. & Ingersoll, A. P. Merging of vortices in the atmosphere of Jupiter: An analysis of Voyager images. Icarus 65, 353–369 (1986).

    Article  ADS  Google Scholar 

  6. Dowling, T. E. & Ingersoll, A. P. Jupiter's Great Red Spot as a shallow water system. J. Atmos. Sci. 46, 3256–3278 (1989).

    Article  ADS  Google Scholar 

  7. Little, B. et al. Galileo images of lightning on Jupiter. Icarus 142, 306–323 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Banfield, D et al. Jupiter's cloud structure from Galileo imaging. Icarus 135, 230–250 (1998).

    Article  ADS  Google Scholar 

  9. Gierasch, P. J. et al. Observation of moist convection in Jupiter's atmosphere. Nature 403, 628–630 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Gibbard, S., Levy, E. H. & Lunine, J. I. Generation of lightning in Jupiter's water cloud. Nature 378, 592–595 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Yair, Y., Levin, Z. & Tzivion, S. Lightning generation in a jovian thundercloud: Results from an axisymmetric numerical cloud model. Icarus 115, 421–434 (1995).

    Article  ADS  Google Scholar 

  12. Niemann, H. B. et al. The composition of the jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 103, 22831–22845 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Folkner, W. M., Woo, R. & Nandi, S. Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo probe's radio signal. J. Geophys. Res. 103, 22847–22855 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Gierasch, P. J., Conrath, B. J. & Magalhães, J. A. Zonal mean properties of Jupiter's upper troposphere from Voyager infrared observations. Icarus 67, 456–483 (1986).

    Article  ADS  CAS  Google Scholar 

  15. West, R. A., Strobel, D. F., & Tomasko, M. G. Clouds, aerosols, and photochemistry in the jovian atmosphere. Icarus 65, 161–217 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Ingersoll, A. P. in Neptune and Triton (ed. Cruikshank, D. P.) 613–682 (Univ. Arizona, Tucson, 1995).

    Google Scholar 

  17. Holton, J. R. An Introduction to Dynamic Meteorology, 3rd edn (Academic, San Diego, 1992).

    Google Scholar 

  18. Gill, A. E. Atmosphere-Ocean Dynamics (Academic, San Diego, 1982).

    Google Scholar 

  19. Rhines, P. B. Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975).

    Article  ADS  Google Scholar 

  20. Maltrud, M. E. & Vallis, G. K. Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 228, 321–342 (1991).

    ADS  Google Scholar 

  21. Panetta, R. L. Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci. 50, 2073–2106 (1993).

    Article  ADS  Google Scholar 

  22. Cho, J. Y. -K. & Polvani, L. M. The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273, 335–337 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Huang, H. -P. & Robinson, W. A. Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55, 611–632 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  24. Hunt, G. E., Müller, J. -P. & Gee, P. Convective growth rates of equatorial features in the jovian atmosphere. Nature 295, 491–494 (1982).

    Article  ADS  Google Scholar 

  25. McWilliams, J. C. & Flierl, G. R. On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr. 9, 1155–1182 (1979).

    Article  ADS  Google Scholar 

  26. Achterberg, R. K. & Ingersoll, A. P. Numerical simulation of baroclinic jovian vortices. J. Atmos. Sci. 51, 541–562 (1994).

    Article  ADS  Google Scholar 

  27. LeBeau, R. -P. & Dowling, T. E. EPIC simulations of time-dependent, three-dimensional vortices with application to Neptune's Great Dark Spot. Icarus 132, 239–265 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Simon for useful suggestions. This research was supported by the NASA Galileo Project and the NASA Planetary Atmospheres Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Ingersoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingersoll, A., Gierasch, P., Banfield, D. et al. Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere. Nature 403, 630–632 (2000). https://doi.org/10.1038/35001021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001021

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing