Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Singularity dynamics in curvature collapse and jet eruption on a fluid surface

Abstract

Finite-time singularities—local divergences in the amplitude or gradient of a physical observable at a particular time—occur in a diverse range of physical systems. Examples include singularities capable of damaging optical fibres and lasers in nonlinear optical systems1, and gravitational singularities2 associated with black holes. In fluid systems, the formation of finite-time singularities cause spray and air-bubble entrainment3, processes which influence air–sea interaction on a global scale4,5. Singularities driven by surface tension have been studied in the break-up of pendant drops6,7,8,9 and liquid sheets10,11,12. Here we report a theoretical and experimental study of the generation of a singularity by inertial focusing, in which no break-up of the fluid surface occurs. Inertial forces cause a collapse of the surface that leads to jet formation; our analysis, which includes surface tension effects, predicts that the surface profiles should be describable by a single universal exponent. These theoretical predictions correlate closely with our experimental measurements of a collapsing surface singularity. The solution can be generalized to apply to a broad class of singular phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface wave collapses and resulting jets.
Figure 2: Comparison of theoretical and experimental surface profiles for 0.26 cm2 s-1 glycerin–water solution.
Figure 3: Surface depressions produced by surface waves of three different heights in 1.94 cm2 s-1 fluid.
Figure 4: Dependence of jet velocity on surface wave height for 1.94 cm2 s-1 fluid.

Similar content being viewed by others

References

  1. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  2. Weinberg, S. Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  3. Newell, A. C. & Zakharov, V. E. Rough sea foam. Phys. Rev. Lett. 69, 1149–1151 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Sarmiento, J. L. & Le Quere, C. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346–1350 ( 1996).

    Article  ADS  CAS  Google Scholar 

  6. Eggers, J. & Dupont, T. F. Drop formation in a one-dimensional approximation of the Navier-Stokes equation. J. Fluid Mech. 262, 205–221 (1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Eggers, J. Universal pinching of 3D axisymmetric free surface flow. Phys. Rev. Lett. 71, 3458–3460 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Brenner, M. et al. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Day, R. F., Hinch, E. J. & Lister, J. R. Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80, 704– 707 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Keller, J. B. & Miksis, M. J. Surface tension driven flows. SIAM J. Appl. Math. 43, 268–277 (1983).

    Article  MathSciNet  Google Scholar 

  11. Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. The long-time motion of vortex sheets with surface tension. Phys. Fluids 9, 1933– 1954 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Chen, Y.-J. & Steen, P. H. Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech. 341, 245–267 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  13. Longuet-Higgins, M. S. Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103–121 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  14. Faraday, M. On a peculiar class of acoustical figures, and on certain forms assumed by groups of particles on vibrating elastic surfaces. Phil. Trans R. Soc. Lond. 121, 299–340 (1831).

    Article  ADS  Google Scholar 

  15. Boulton-Stone, J. M. & Blake, J. R. Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437 –466 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Longuet-Higgins, M. S. & Oguz, H. N. Critical microjets in collapsing cavities. J. Fluid Mech. 290, 183–201 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  17. Longuet-Higgins, M. S. & Oguz, H. N. Critical jets in surface waves and collapsing cavities. Phil. Trans. R. Soc. Lond. A 355, 625–639 ( 1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Barenblatt, G. I. Scaling, Self-similarity, and Intermediate Asymptotics (Cambridge University Press, 1996).

    Book  Google Scholar 

  19. Zakharov, V. E. in Breaking Waves. (eds Banner, M. L. & Grisham, R. H. J.) (Springer, Berlin, 1992).

    Google Scholar 

  20. Cooker, M. J. & Peregrine, D. H. Violent surface motion as near-breaking waves meet a wall. In Breaking Waves. (eds Banner, M. L. & Grisham, R. H. J.) (Springer, Berlin, 1992).

    Google Scholar 

  21. Hogrefe, J. E. et al. Power-law singularities in gravity-capillary waves. Physica D 123, 183–205 ( 1998).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank R. Rohde, M. Brenner, A. Bertozzi, J. Drake, T. Antonsen, E. Ott and J. Pyle for their input. D.P.L. is a Cottrell Scholar of the Research Corporation. This work was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Lathrop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeff, B., Kleber, B., Fineberg, J. et al. Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403, 401–404 (2000). https://doi.org/10.1038/35000151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000151

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing