Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA computing on surfaces

Abstract

DNA computing was proposed1 as a means of solving a class of intractable computational problems in which the computing time can grow exponentially with problem size (the ‘NP-complete’ or non-deterministic polynomial time complete problems). The principle of the technique has been demonstrated experimentally for a simple example of the hamiltonian path problem2 (in this case, finding an airline flight path between several cities, such that each city is visited only once3). DNA computational approaches to the solution of other problems have also been investigated4,5,6,7,8,9. One technique10,11,12,13 involves the immobilization and manipulation of combinatorial mixtures of DNA on a support. A set of DNA molecules encoding all candidate solutions to the computational problem of interest is synthesized and attached to the surface. Successive cycles of hybridization operations and exonuclease digestion are used to identify and eliminate those members of the set that are not solutions. Upon completion of all the multi-step cycles, the solution to the computational problem is identified using a polymerase chain reaction to amplify the remaining molecules, which are then hybridized to an addressed array. The advantages of this approach are its scalability and potential to be automated (the use of solid-phase formats simplifies the complex repetitive chemical processes, as has been demonstrated in DNA and protein synthesis14). Here we report the use of this method to solve a NP-complete problem. We consider a small example of the satisfiability problem (SAT)2, in which the values of a set of boolean variables satisfying certain logical constraints are determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the surface-based approach to DNA computations.
Figure 2: Four cycles of SAT computation.
Figure 3: Three-dimensional plot and histogram of the fluorescence intensities on a 16 element addressed array used for ‘readout’.

Similar content being viewed by others

References

  1. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 ( 1994).

    Article  ADS  CAS  Google Scholar 

  2. Garey, M. R. & Johnson, D. S. Computers and Intractability: a Guide to the Theory of NP-completeness (Freeman, New York, 1979).

    MATH  Google Scholar 

  3. Adleman, L. M. Computing with DNA. Sci. Am. 279, 54– 61 (1998).

    Article  CAS  Google Scholar 

  4. Lipton, R. J. DNA solution of hard computational problems. Science 268, 542–545 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Guarnieri, F., Fliss, M. & Bancroft, C. Making DNA add. Science 273, 220–223 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Ogihara, M. Breadth First Search 3SAT Algorithms for DNA Computers (Technical report TR 629, Department of Computer Science, University of Rochester, Rochester, New York, 1996).

    Google Scholar 

  7. Ouyang, Q., Kaplan, P. D., Liu, S. & Libchaber, A. DNA solution of the maximal clique problem. Science 278, 446–449 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Seeman, N. C. et al. New motifs in DNA nanotechnology. Nanotechnology. 9, 257–273 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Smith, L. M. et al. A surface-based approach to DNA computation. J. Comput. Biol. 5, 255–267 (1998).

    Article  CAS  Google Scholar 

  11. Frutos, A. G. et al. Demonstration of a word design strategy for DNA computing on surfaces. Nucl. Acid. Res. 25, 4748– 4757 (1997).

    Article  CAS  Google Scholar 

  12. Frutos, A. G., Smith, L. M. & Corn, R. M. Enzymatic ligation reactions of DNA “words” on surfaces for DNA computing. J. Am. Chem. Soc. 120 , 10277–10282 (1998).

    Article  CAS  Google Scholar 

  13. Cai, W. et al. in Proc. 1st Annu. Int. Conf. on Computational Molecular Biology (RECOMB97) 67–74 (Association for Computing Machinery, New York, 1997).

    Google Scholar 

  14. Smith, L. M. Automated synthesis and sequence analysis of biological macromolecules. Anal. Chem. 60, 381A–390A (1988).

    Article  CAS  Google Scholar 

  15. Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 ( 1996).

    Article  ADS  CAS  Google Scholar 

  17. Morimoto, N., Arita, M. & Suyama, A. in Proc. DIMACS: DNA Based Computers (III) (eds Rubin, H. & Wood, D. H.) 83–92 (American Mathematical Society, Providence, 1997).

    Google Scholar 

  18. Yoshida, H. & Suyama, A. in Preliminary Proc. DIMACS: DNA Based Computers (V) 9–20 (American Mathematical Society, Providence, 1999).

    Google Scholar 

  19. Schöning, U. in Proc. 40th Annu. IEEE Conf. of Foundations of Computer Science (FOCS) 410–414 (IEEE Computer Society, Los Alamitos, California, 1999).

    Google Scholar 

  20. Guo, Z., Guilfoyle, R. A., Thiel, A. J., Wang, R. & Smith, L. M. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucl. Acid. Res. 22, 5456– 5465 (1994).

    Article  CAS  Google Scholar 

  21. Jordan, C. E., Frutos, A. G., Thiel, A. J. & Corn, R. M. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem. 69, 4939–4947 (1997).

    Article  CAS  Google Scholar 

  22. Bain, C. D. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989).

    Article  CAS  Google Scholar 

  23. Baskaran, N. et al. Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. 6, 633–638 (1996).

    Article  CAS  Google Scholar 

  24. Rees, W. A., Yager, T. D., Korte, J. & von Hippel, P. H. Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32, 137–144 (1993).

    Article  CAS  Google Scholar 

  25. Voss, K. O., Pieter Roos, K., Nonay, R. L. & Dovichi, N. J. Combating PCR bias in bisulfate-based cytosine methylation analysis. Betaine-modified cytosine deamination PCR. Anal. Chem. 70, 3818–3823 (1998).

    Article  CAS  Google Scholar 

  26. Farrell, R. E. DNA amplification. Immunol. Invest. 26, 3–7 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  27. Lyamichev, V. et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnol. 17, 292–296 (1999).

    Article  CAS  Google Scholar 

  28. Pippenger, N. Developments in the synthesis of reliable organisms from unreliable components. Proc. Symp. Pure Math. 50, 311– 324 (1990).

    Article  MathSciNet  Google Scholar 

  29. Boneh, D., Dunworth, C., Lipton, R. J. & Sgall, J. DNA Based Computers II (eds Landweber, L. F. & Baum, E. B.) 163 –170 (DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 44, American Mathematical Society, Providence, 1999).

  30. Karp, R. M., Kenyon, C. & Waarts, O. Error-resilient DNA computation. Random Struct. Algor. 15, 450–466 ( 1999).

    Article  MathSciNet  Google Scholar 

  31. Gillmor, S. D., Thiel, A. J., Smith, L. M. & Lagally, M. G. Hydrophilic/hydrophobic patterned surfaces as templates for DNA arrays. Langmuir (submitted).

  32. Gallop, M. A., Barrett, R. W., Dower, W. J., Fodor, S. P. A. & Gordon, E. M. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J. Med. Chem. 37, 1233–1251 (1994).

    Article  CAS  Google Scholar 

  33. Gordon, E. M., Barrett, R. W., Dower, W. J., Fodor, S. P. A. & Gallop, M. A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J. Med. Chem. 37, 1385–1401 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gillmor and J. Brockman for help with the preparation of the photopatterned read-out arrays, and M. Lagally for discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd M. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Wang, L., Frutos, A. et al. DNA computing on surfaces. Nature 403, 175–179 (2000). https://doi.org/10.1038/35003155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003155

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing