Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measurement of the spatial coherence of a trapped Bose gas at the phase transition

Abstract

The experimental realization of Bose–Einstein condensates of dilute gases1,2,3 has allowed investigations of fundamental concepts in quantum mechanics at ultra-low temperatures, such as wave-like behaviour and interference phenomena. The formation of an interference pattern depends fundamentally on the phase coherence of a system; the latter may be quantified by the spatial correlation function. Phase coherence over a long range4,5,6,7 is the essential factor underlying Bose–Einstein condensation and related macroscopic quantum phenomena, such as superconductivity and superfluidity. Here we report a direct measurement of the phase coherence properties of a weakly interacting Bose gas of rubidium atoms. Effectively, we create a double slit for magnetically trapped atoms using a radio wave field with two frequency components. The correlation function of the system is determined by evaluating the interference pattern of two matter waves originating from the spatially separated ‘slit’ regions of the trapped gas. Above the critical temperature for Bose–Einstein condensation, the correlation function shows a rapid gaussian decay, as expected for a thermal gas. Below the critical temperature, the correlation function has a different shape: a slow decay towards a plateau is observed, indicating the long-range phase coherence of the condensate fraction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interference pattern of matter-wave beams emitted from two spatially separated regions of a trapped Bose gas.
Figure 2: Measurement of the spatial coherence of a trapped Bose–Einstein condensate.
Figure 3: Spatial coherence of the Bose gas above and below the transition temperature Tc.
Figure 4: Spatial correlation function of a trapped Bose gas.

Similar content being viewed by others

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969– 3973 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose–Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Penrose, O. On the quantum mechanics of helium II. Phil. Mag. 42 , 1373–1377 (1951).

    Article  CAS  Google Scholar 

  5. Penrose, O. & Onsager, L. Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576– 584 (1956).

    Article  ADS  CAS  Google Scholar 

  6. Beliaev, S. T. Application of the method of quantum field theory to a system of bosons. J. Exp. Theor. Phys. (USSR) 34, 417– 432 (1958).

    Google Scholar 

  7. Yang, C. N. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

    Article  CAS  Google Scholar 

  9. Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1998).

    Article  ADS  Google Scholar 

  10. Hagley, E. W. et al. Measurement of the coherence of a Bose–Einstein condensate. Phys. Rev. Lett. 83, 312– 315 (1999).

    Article  Google Scholar 

  11. Ketterle, W. & Miesner, H. -J. Coherence properties of Bose–Einstein condensates and atom lasers. Phys. Rev. A 56, 3291–3293 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Burt, E. A. et al. Coherence, correlations, and collisions: what one learns about Bose–Einstein condensates from their decay. Phys. Rev. Lett 79, 337–340 ( 1997).

    Article  ADS  CAS  Google Scholar 

  13. Hall, D. S., Matthews, M. R., Wieman, C. E. & E. A. Cornell. Measurements of relative phase in two-component Bose–Einstein condensates. Phys. Rev. Lett. 81, 1543–1546 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Bloch, I., Hänsch, T. W. & Esslinger, T. Atom laser with a cw output coupler. Phys. Rev. Lett. 82, 3008–3011 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Esslinger, T., Bloch, I. & Hänsch, T. W. Bose–Einstein condensation in a quadrupole-Ioffe-configuration trap. Phys. Rev. A 58, R2664– R2667 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Flügge, S. Practical quantum mechanics. 101–107 (Springer, Heidelberg, 1974).

    Google Scholar 

  17. Band, Y. B., Julienne P. S. & Trippenbach, M. Radio-frequency output coupling of the Bose–Einstein condensate for atom lasers. Phys. Rev. A. 59, 3823–3831 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Anderson, B. & Kasevich, M. Macroscopic quantum interference from atomic tunnel arrays. Science 283, 1686–1689 (1998).

    Article  ADS  Google Scholar 

  19. Ensher, J. R., Jin, D. S., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Bose–Einstein condensation in a dilute gas: Measurement of energy and ground-state occupation. Phys. Rev. Lett. 77, 4984–4987 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Naraschewski, M. & R. Glauber. Spatial coherence and density correlations of trapped Bose gases. Phys. Rev. A 59 , 4595–4607 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Fetter, A. L. Nonuniform states of an imperfect Bose gas. Ann. Phys. 70, 67–101 (1972).

    Article  ADS  CAS  Google Scholar 

  22. Huang, K. Statistical Mechanics. 2nd edn., 304 (Wiley, New York, 1987).

    Google Scholar 

Download references

Acknowledgements

We thank J. Schneider, W. Zwerger and D. M. Stamper-Kurn for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Esslinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, I., Hänsch, T. & Esslinger, T. Measurement of the spatial coherence of a trapped Bose gas at the phase transition. Nature 403, 166–170 (2000). https://doi.org/10.1038/35003132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003132

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing