Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans

Abstract

The germ line is an immortal cell lineage that is passed indefinitely from one generation to the next. To identify the genes that are required for germline immortality, we isolated Caenorhabditis elegans mutants with mortal germ lines—worms that can reproduce for several healthy generations but eventually become sterile. One of these mortal germline (mrt ) mutants, mrt-2, exhibits progressive telomere shortening and accumulates end-to-end chromosome fusions in later generations, indicating that the MRT-2 protein is required for telomere replication. In addition, the germ line of mrt-2 is hypersensitive to X-rays and to transposon activity. Therefore, mrt-2 has defects in responding both to damaged DNA and to normal double-strand breaks present at telomeres. mrt-2 encodes a homologue of a checkpoint gene that is required to sense DNA damage in yeast. These results indicate that telomeres may be identified as a type of DNA damage and then repaired by the telomere-replication enzyme telomerase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generation at sterility for 16 mortal germline mutants.
Figure 2: The Mortal Germline phenotype of mrt-2.
Figure 3: mrt-2 has defects in responding to DNA damage.
Figure 4: mrt-2 exhibits late-onset end-to-end chromosome fusions.
Figure 5: mrt-2 has a progressive telomere-shortening phenotype.
Figure 6: mrt-2 encodes a homologue of the S. pombe rad1+ and S. cerevisiae RAD17 checkpoint genes.

Similar content being viewed by others

References

  1. Wylie, C. Germ cells. Cell 96, 165–174 (1999).

    Article  CAS  Google Scholar 

  2. Strome, S. & Wood, W. B. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 79, 1558–1562 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Hodgkin, J. & Doniach, T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146, 149–164 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25– 34 (1997).

    Article  CAS  Google Scholar 

  5. Nakamura, T. M., Cooper, J. P. & Cech, T. R. Two modes of survival of fission yeast without telomerase. Science 282, 493–496 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Naito, T., Matsuura, A. & Ishikawa, F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genet. 20, 203–206 (1998).

    Article  CAS  Google Scholar 

  7. Greider, C. W. & Blackburn, E. H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887– 898 (1987).

    Article  CAS  Google Scholar 

  8. Nugent, C. I. & Lundblad, V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12, 1073–1085 (1998).

    Article  CAS  Google Scholar 

  9. Lundblad, V. & Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  Google Scholar 

  10. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Palladino, F. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543– 555 (1993).

    Article  CAS  Google Scholar 

  12. Porter, S. E., Greenwell, P. W., Ritchie, K. B. & Petes, T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 582–585 ( 1996).

    Article  CAS  Google Scholar 

  13. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24 , 4639–4648 (1996).

    Article  CAS  Google Scholar 

  14. Boulton, S. J. & Jackson, S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819 –1828 (1998).

    Article  CAS  Google Scholar 

  15. Nugent, C. I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).

    Article  CAS  Google Scholar 

  16. Vaziri, H. et al. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J. 16, 6018–6033 (1997).

    Article  CAS  Google Scholar 

  17. Sprung, C. N., Bryan, T. M., Reddel, R. R. & Murnane, J. P. Normal telomere maintenance in immortal ataxia telangiectasia cell lines. Mutat. Res. 379, 177–184 (1997).

    Article  CAS  Google Scholar 

  18. Greenwell, P. W. et al. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82, 823–829 (1995).

    Article  CAS  Google Scholar 

  19. Dahlen, M., Olsson, T., Kanter-Smoler, G., Ramne, A. & Sunnerhagen, P. Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe. Mol. Biol. Cell. 9, 611–621 ( 1998).

    Article  CAS  Google Scholar 

  20. Ritchie, K. B., Mallory, J. C. & Petes, T. D. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6065–6075 ( 1999).

    Article  CAS  Google Scholar 

  21. Anderson, P. Mutagenesis. Methods Cell Biol. 48, 31– 58 (1995).

    Article  CAS  Google Scholar 

  22. Hodgkin, J. A., Horvitz, H. R. & Brenner, S. Nondisjunction mutants of the nematode C. elegans . Genetics 91, 67–94 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Plasterk, R. H. A. & van Leunen, H. G. A. M. Transposons. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 97–116 (Cold Spring Harbor Laboratory Press, Plainview, 1997).

    Google Scholar 

  24. Herman, R. K., Kari, C. K. & Hartman, P. S. Dominant X-chromosome nondisjunction mutants of Caenorhabditis elegans. Genetics 102, 379–400 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McClintock, B. The stability of broken ends of chromosomes of Zea mays. Genetics 26, 234–282 ( 1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Albertson, D. G. & Thomson, J. N. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans . Chromosome Res. 1, 15– 26 (1993).

    Article  CAS  Google Scholar 

  27. Wicky, C. et al. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 8983–8988 ( 1996).

    Article  ADS  CAS  Google Scholar 

  28. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  Google Scholar 

  29. d'Adda di Fagagna, F. et al. Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nature Genet. 23, 76–80 (1999).

    Article  CAS  Google Scholar 

  30. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 (1993).

    Article  CAS  Google Scholar 

  31. Dean, F. B., Lian, L. & O'Donnell, M. cDNA cloning and gene mapping of human homologs for Schizosaccharomyces pombe rad17, rad1, and hus1 and cloning of homologs from mouse, Caenorhabditis elegans, and Drosophila melanogaster . Genomics 54, 424– 436 (1998).

    Article  CAS  Google Scholar 

  32. Bluyssen, H. A. et al. A human and mouse homolog of the Schizosaccharomyces pombe rad1+ cell cycle checkpoint control gene. Genomics 54, 331–337 (1998).

    Article  CAS  Google Scholar 

  33. al-Khodairy, F. & Carr, A. M. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J. 11, 1343–1350 ( 1992).

    Article  CAS  Google Scholar 

  34. Marathi, U. K. et al. RAD1, a human structural homolog of the Schizosaccharomyces pombe RAD1 cell cycle checkpoint gene. Genomics 54, 344–347 (1998).

    Article  CAS  Google Scholar 

  35. Freire, R. et al. Human and mouse homologs of Schizosaccharomyces pombe rad1 (+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev. 12, 2560 –2573 (1998).

    Article  CAS  Google Scholar 

  36. Weinert, T. A. & Hartwell, L. H. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134 , 63–80 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Enoch, T., Carr, A. M. & Nurse, P. Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev. 6, 2035– 2046 (1992).

    Article  CAS  Google Scholar 

  38. Morrow, D. M., Tagle, D. A., Shiloh, Y., Collins, F. S. & Hieter, P. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82, 831–840 (1995).

    Article  CAS  Google Scholar 

  39. Matsuura, A., Naito, T. & Ishikawa, F. Genetic control of telomere integrity in Schizosaccharomyces pombe, rad3(+) and tel1(+) are parts of two regulatory networks independent of the downstream protein kinases chk1(+) and cds1(+). Genetics 152, 1501–1512 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sandell, L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729–739 (1993).

    Article  CAS  Google Scholar 

  41. Henderson, E. in Telomeres (eds Blackburn, E. H. & Greider, C. W.) 35– 68 (Cold Spring Harbor Laboratory Press, Plainview, 1995).

    Google Scholar 

  42. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 ( 1999).

    Article  CAS  Google Scholar 

  43. Lydall, D. & Weinert, T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270, 1488–1491 (1995).

    Article  ADS  CAS  Google Scholar 

  44. Wellinger, R. J., Wolf, A. J. & Zakian, V. A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72, 51 –60 (1993).

    Article  CAS  Google Scholar 

  45. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  ADS  CAS  Google Scholar 

  46. Mills, K. D., Sinclair, D. A. & Guarente, L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609–620 (1999).

    Article  CAS  Google Scholar 

  47. Martin, S. G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).

    Article  CAS  Google Scholar 

  48. Fang, G. & Cech, T. R. Telomerase RNA localized in the replication band and spherical subnuclear organelles in hypotrichous ciliates. J. Cell Biol. 130, 243–253 (1995).

    Article  CAS  Google Scholar 

  49. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 ( 1999).

    Article  CAS  Google Scholar 

  50. Sulston, J. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W. B.) 587–606 (Cold Spring Harbor Laboratory Press, Plainview, 1988).

    Google Scholar 

Download references

Acknowledgements

We thank R. Hill, R. H. A. Plasterk and P. Kuwabara for advice and discussions; K. Van Auken for nob-1 (ct230); F. Müller and A. Coulson for plasmids; and A. Gartner, K. J. Patel, R. Harris, M. O'Reilly, D. Rhodes, V. P. C. C. Yu, A. Woollard, N. Hopper, M. Bickle, S. Sokol, and C. Milne for discussions and comments on this manuscript. Some strains were from the C. elegans Genetics Center (St. Paul, Minnesota), which is supported by the National Center for Research Resources. This work was supported by the Medical Research Council UK and the Howard Hughes Medical Institute. S.A. is a recipient of a Burroughs Wellcome Fund Hitchings-Elion Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S., Hodgkin, J. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403, 159–164 (2000). https://doi.org/10.1038/35003120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing