Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Central inputs mask multiple adult neural networks within a single embryonic network

Abstract

It is usually assumed that, after construction of basic network architecture in embryos1, immature networks undergo progressive maturation to acquire their adult properties2,3,4. We examine this assumption in the context of the lobster stomatogastric nervous system. In the lobster, the neuronal population5 that will form this system is at first orgnanized into a single embryonic network that generates a single rhythmic pattern6. The system then splits into different functional adult networks6 controlled by central descending systems7,8; these adult networks produce multiple motor programmes, distinctively different from the single output of the embryonic network. We show here that the single embryonic network can produce multiple adult-like programmes. This occurs after the embryonic network is silenced by removal of central inputs, then pharmacologically stimulated to restore rhythmicity. Furthermore, restoration of the flow of descending information reversed the adult-like pattern to an embryonic pattern. This indicates that the embryonic network possesses the ability to express adult-like network characteristics, but descending information prevents it from doing so. Functional adult networks may therefore not necessarily be derived from progressive ontogenetic changes in networks themselves, but may result from maturation of descending systems that unmask pre-existing adult networks in an embryonic system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous rhythmic activity generated by the same neurons in adult and embryonic stomatogastric nervous system of H. gammarus.
Figure 2: The spontaneous rhythmic activity of the embryonic network depends on the presence of descending inputs.
Figure 3: The embryonic stomatogastric network has the potential to express multiple adult-like rhythmic motor outputs.
Figure 4: Descending inputs mask expression of multiple adult-like network activities in the embryonic STNS.

Similar content being viewed by others

References

  1. Fénelon,V. S., Casasnovas,B., Simmers,J. & Meyrand,P. Development of rhythmic pattern generators. Curr. Opin. Neurobiol. 8, 705–709 (1998).

    Article  Google Scholar 

  2. Sillar,K. T. Synaptic specificity: development of locomotor rhythmicity. Curr. Opin. Neurobiol. 4, 101–107 (1994).

    Article  CAS  Google Scholar 

  3. Spitzer,N. C. Development of voltage-dependent and ligand-gated channels in excitable membranes. Prog. Brain Res. 102, 169–179 (1994).

    Article  CAS  Google Scholar 

  4. Levine,R. B., Morton,D. B. & Restifo,L. L. Remodeling of the insect nervous system. Curr. Opin. Neurobiol. 5, 28–35 (1995).

    Article  CAS  Google Scholar 

  5. Fénelon,V. S., Casasnovas,B., Faumont,S. & Meyrand,P. Ontogenetic alteration in peptidergic expression within a stable neuronal population in lobster stomatogastric nervous system. J. Comp. Neurol. 399, 289–305 (1998).

    Article  Google Scholar 

  6. Casasnovas,B. & Meyrand,P. Functional differentiation of adult neural circuits from a single embryonic network. J. Neurosci. 15, 5703–5718 (1995).

    Article  CAS  Google Scholar 

  7. Moulins,M. & Cournil,I. All-or-none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator. J. Neurobiol. 5, 447–458 (1982).

    Article  Google Scholar 

  8. Selverston,A. I. & Moulins,M. The Crustacean Stomatogastric System (Springer, Berlin, 1987).

    Book  Google Scholar 

  9. Harris-Warrick,R. M., Marder,E., Selverston,A. I. & Moulins,M. Dynamic Biological Networks. The Stomatogastric Nervous System (MIT Press, Cambridge, Massachusetts, 1992).

    Google Scholar 

  10. Meyrand,P., Simmers,J. & Moulins,M. Construction of a pattern-generating circuit with neurons of different networks. Nature 351, 60–63 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Faumont,S., Simmers,J. & Meyrand,P. Activation of a lobster motor rhythm-generating network by disinhibition of permissive modulatory inputs. J. Neurophysiol. 80, 2776–2780 (1998).

    Article  CAS  Google Scholar 

  12. Masabuau,J.-C. & Meyrand,P. Modulation of a neural network by physiological levels of oxygen in lobster stomatogastric ganglion. J. Neurosci. 16, 3950–3959 (1996).

    Article  Google Scholar 

  13. Robertson,R. M. & Moulins,M. Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion. II. The gastric rhythm. J. Comp. Physiol. A 154, 473–491 (1984).

    Article  Google Scholar 

  14. Kilman,V. et al. Sequential developmental acquisition of cotransmitters in identified neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homorus gammarus. J. Comp. Neurol. 408, 318–334 (1999).

    Article  CAS  Google Scholar 

  15. Fénelon,V. S., Kilman,V., Myrand,P. & Marder,E. Sequential developmental acquisition of neuromodulatory inputs to a central pattern generating network. J. Comp. Neurol. 408, 335–351 (1999).

    Article  Google Scholar 

  16. Hooper,S. L. & Marder,E. Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide. Brain Res. 305, 186–191 (1984).

    Article  CAS  Google Scholar 

  17. Flamm,R. E. & Harris-Warrick,R. M. Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. J. Neurophysiol. 55, 847–865 (1986).

    Article  CAS  Google Scholar 

  18. Turrigiano,G. G. & Selverston,A. I. Cholecystokinin-like peptide is a modulator of a crustacean central pattern generator. J. Neurosci. 9, 2486–2501 (1989).

    Article  CAS  Google Scholar 

  19. Elson,R. C. & Selverston,A. I. Mechanisms of gastric rhythm generation in the isolated stomatogastric ganglion of spiny lobsters: bursting pacemaker potentials, synaptic interactions, and muscarinic modulation. J. Neurophysiol. 68, 890–907 (1992).

    Article  CAS  Google Scholar 

  20. Bal,T., Nagy,F. & Moulins,M. Muscarinic modulation of a pattern-generating network: control of neuronal properties. J. Neurosci. 14, 3019–3035 (1994).

    Article  CAS  Google Scholar 

  21. Clemens,S., Massabuau,J.-C., Legeay,A., Meyrand,P. & Simmers,J. In vivo modulation of interacting central pattern generators in lobster stomatogastric ganglion: Influence of feeding and partial pressure of oxygen. J. Neurosci. 18, 2788–2799 (1998).

    Article  CAS  Google Scholar 

  22. Bolshakov,V. Y. & Siegelbaum,S. A. Regulation of hippocampal release during development and long-term potentiation. Science 269, 1730–1734 (1995).

    Article  ADS  CAS  Google Scholar 

  23. McCormick,D. A., Trent,F. & Ramoa,A. S. Postnatal development of synchronized network oscillations in the ferret dorsal lateral geniculate and perigeniculate nuclei. J. Neurosci. 15, 5739–5752 (1995).

    Article  CAS  Google Scholar 

  24. Durand,G. M., Kovalchuk,Y. & Konnerth,A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Katz,L. C. & Shatz,C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Nick,T. A., Kaczmarek,L. K. & Carew,T. J. Ionic currents underlying developmental regulation of repetitive firing in Aplysia bag cell neurons. J. Neurosci. 16, 7583–7598 (1996).

    Article  CAS  Google Scholar 

  27. Warren,R. A. & Jones,E. G. Maturation of neuronal form and function in a mouse thalamo-cortical circuit. J. Neurosci. 17, 277–295 (1997).

    Article  CAS  Google Scholar 

  28. Sun,Q.-Q. & Dale,N. Developmental changes in expression of ion currents accompany maturation of locomotor pattern in frog tadpoles. J. Physiol. (Lond.) 507, 257–264 (1998).

    Article  CAS  Google Scholar 

  29. Angulo,M. C., Staiger,J. F., Rossier,J. & Audinat,E. Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection. J. Neurosci. 19, 1566–1576 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Bem, E. Marder, R. Miles, J. Simmers and S. Faumont for comments on an earlier version of the manuscript, and S. Faumont for providing the adult intracellular recordings shown in Fig. 1A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Meyrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Feuvre, Y., Fénelon, V. & Meyrand, P. Central inputs mask multiple adult neural networks within a single embryonic network. Nature 402, 660–664 (1999). https://doi.org/10.1038/45238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45238

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing