Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Impacts
  • Published:

The future of evolutionary developmental biology

Combining fields as diverse as comparative embryology, palaeontology, molecular phylogenetics and genome analysis, the new discipline of evolutionary developmental biology aims at explaining how developmental processes and mechanisms become modified during evolution, and how these modifications produce changes in animal morphology and body plans. In the next century this should give us far greater mechanistic insight into how evolution has produced the vast diversity of living organisms, past and present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ‘Man is but a worm’ reproduced from Punch's Almanac for 1882.

Reproduced with permission of Punch Ltd.

Figure 2: Proposed phylogeny of the animal kingdom, based primarily on 18S rDNA sequences6,8 and Hox gene cluster composition9.

CORBIS/G. BALAVOINE/B.OKAMURA

References

  1. Darwin, C. The Origin of Species by Means of Natural Selection (John Murray, London, 1859).

  2. Haeckel, E. The Evolution of Man: A Popular Exposition of the Principal Points of Human Ontogeny and Phylogeny (Appleton, New York, 1896).

  3. McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A. & Gehring, W. J. Nature 308, 428– 433 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Scott, M. P. & Weiner, A. J. Proc. Natl Acad. Sci. USA 81, 4115–4119 (1984).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. McGinnis, W. Genetics 137, 607–611 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Field, K. G. et al. Science 239, 748–753 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Willmer, P. G. Invertebrate Relationships: Patterns in Animal Evolution (Cambridge Univ. Press, 1990).

  8. Aguinaldo, M. A. et al. Nature 387, 489–493 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. de Rosa, R. et al. Nature 399, 772–776 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Development 121, 333–346 (1995).

    CAS  PubMed  Google Scholar 

  11. Gaunt, S. J., Dean, W., Sang, H. & Burton, R. D. Mech. Dev. 82, 109–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Cohn, M. J. & Tickle, C. Nature 399, 474–479 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Shashikant, C. S. et al. Proc. Natl Acad. Sci. USA 95, 15446– 15451 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Holland, P. W. H. & Garcia-Fernàndez, J. Dev. Biol. 173, 382–395 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Simmen, M. W., Leitgeb, S., Clark, V. H., Jones, S. J. M. & Bird, A. Proc. Natl Acad. Sci. USA 95, 4437–4440 (1997).

    Article  ADS  Google Scholar 

  16. Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L. & Postlethwait, J. Genetics 151, 1531– 1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stern, D. L. Nature 396, 463–466 ( 1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mackay, T. F. C. BioEssays 18, 113–121 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  19. Rutherford, S. L. & Lindquist, S. Nature 396, 336–342 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Budd, G. E. BioEssays 21, 326–332 ( 1999).

    Article  Google Scholar 

  21. De Robertis, E. M. & Sasai, Y. Nature 380, 37–40 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Brooke, N. M., Garcia-Fernàndez, J. & Holland, P. W. H. Nature 392, 920–922 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Aldridge, R. J. & Purnell, M. A. Trends Ecol. Evol. 11, 463–468 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  24. Conway Morris, S. & Peel, J. S. Phil. Trans. R. Soc. Lond. B 347, 305–358 (1995).

    Article  ADS  Google Scholar 

  25. Coates, M. I. Development (Suppl.) 169–180 ( 1994).

    Google Scholar 

  26. Ruvkun, G. & Hobert, O. Science 282, 2033–2041 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Cockell, M. & Gasser, S. M. Curr. Opin. Gen. Dev. 9, 199–205 (1999).

    Article  CAS  Google Scholar 

  28. Aparicio S. et al. Nature Genet. 16, 79– 83 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Mouchel-Vielh, E., Rigolot, C., Gibert, J.-M. & Deutsch, J. S. Mol. Phylogenet. Evol. 9, 382–389 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank M. Cohn, S. Shimeld and A. Holland for comments on the manuscript, B. Okamura for the bryozoan photograph in Fig. 2, and B. Cohen, M. Telford and other colleagues for helpful discussions. I hope that non-animal biologists will excuse my zoocentric selection of examples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. H. Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, P. The future of evolutionary developmental biology. Nature 402 (Suppl 6761), C41–C44 (1999). https://doi.org/10.1038/35011536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35011536

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing