Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes

An Erratum to this article was published on 04 May 2000

Abstract

Angiosperms have dominated the Earth's vegetation since the mid-Cretaceous (90 million years ago)1, providing much of our food, fibre, medicine and timber, yet their origin and early evolution have remained enigmatic for over a century2,3,4,5,6,7,8. One part of the enigma lies in the difficulty of identifying the earliest angiosperms; the other involves the uncertainty regarding the sister group of angiosperms among extant and fossil gymnosperms. Here we report a phylogenetic analysis of DNA sequences of five mitochondrial, plastid and nuclear genes (total aligned length 8,733 base pairs), from all basal angiosperm and gymnosperm lineages (105 species, 103 genera and 63 families). Our study demonstrates that Amborella, Nymphaeales and Illiciales-Trimeniaceae-Austrobaileya represent the first stage of angiosperm evolution, with Amborella being sister to all other angiosperms. We also show that Gnetales are related to the conifers and are not sister to the angiosperms, thus refuting the Anthophyte Hypothesis1. These results have far-reaching implications for our understanding of diversification, adaptation, genome evolution and development of the angiosperms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The single most parsimonious tree found in the five-gene DNA sequence analysis (tree length, 13,240 steps; consistency index, 0.413; retention index, 0.604).
Figure 2: The portion of the aligned matrix from mitochondrial matR showing the INDEL that distinguishes euangiosperms (top block) from ANITA (middle block) and gymnosperms (bottom block).

Similar content being viewed by others

References

  1. Crane,P. R., Friis,E. M. & Pedersen,K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Darwin,C. in More Letters of Charles Darwin: A Record of His Work in a Series of Hitherto Unpublished Letters Vol. 2 (eds Darwin, F. & Seward, A. C.) 20–22, 26–27 (John Murray, London, 1903).

    Google Scholar 

  3. Arber,E. A. N. & Parkin,J. On the origin of angiosperms. Bot. J. Linnean Soc. 38, 29–80 (1907).

    Article  Google Scholar 

  4. von Wettstein,R. R. Handbuck der Systematischen Botanik. II. Band (Franz Deuticke, Wien, 1907).

    Google Scholar 

  5. Takhtajan,A. Flowering Plants: Origin and Dispersal (Oliver and Boyd, Edinburgh, 1969).

    Google Scholar 

  6. Doyle,J. A. Origin of angiosperms. Annu. Rev. Ecol. Syst. 9, 365–392 (1978).

    Article  Google Scholar 

  7. Endress,P. K. Reproductive structures and phylogenetic significance of extant primitive angiosperms. Pl. Syst. Evol. 152, 1–28 (1986).

    Article  Google Scholar 

  8. Cronquist,A. The Evolution and Classification of Flowering Plants 2nd edn (The New York Botanical Garden, New York, 1988).

    Google Scholar 

  9. Donoghue,M. J. & Doyle,J. A. in Evolution, Systematics, and Fossil History of the Hamamelidae Vol. 1 (eds Crane, P. R. & Blackmore, S.) 17–45 (Clarendon, Oxford, 1989).

    Google Scholar 

  10. Doyle,J. A. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J. Arnold Arbor. 50, 1–35 (1969).

    Article  Google Scholar 

  11. Walker,J. W. & Walker,A. G. Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Missouri Bot. Gard. 71, 464–521 (1984).

    Article  Google Scholar 

  12. Friis,E. M., Pedersen,K. R. & Crane,P. R. Angiosperm floral structures from the Early Cretaceous of Portugal. Pl. Syst. Evol. (Suppl.) 8, 31–49 (1994).

    Google Scholar 

  13. Friis,E. M., Pedersen,K. R. & Crane,P. R. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Missouri Bot. Gard. 86, 259–296 (1999).

    Article  Google Scholar 

  14. Walker,J. W., Brenner,G. J. & Walker,A. G. Winteraceous pollen in the lower Cretaceous of Israel: early evidence of a magnolialean angiosperm family. Science 220, 1273–1275 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Taylor,D. W. & Hickey,L. J. An Aptian plant with attached leaves and flowers: implications for angiosperm origin. Science 247, 702–704 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Sun,G., Dilcher,D. L., Zheng,S. & Zhou,Z. In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282, 1692–1695 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Martin,P. G. & Dowd,J. M. Studies of angiosperm phylogeny using protein sequences. Ann. Missouri Bot. Gard. 78, 296–337 (1991).

    Article  Google Scholar 

  18. Hamby,R. K. & Zimmer,E. A. in Molecular Systematics of Plants (eds Soltis, P. S., Soltis, D. E. & Doyle, J. J.) 50–91 (Chapman and Hall, New York, 1992).

    Book  Google Scholar 

  19. Soltis,D. E. et al. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard. 84, 1–49 (1997).

    Article  Google Scholar 

  20. Chase,M. W. et al. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80, 528–580 (1993).

    Article  Google Scholar 

  21. Qiu,Y.-L., Chase,M. W., Les,D. H. & Parks,C. R. Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann. Missouri Bot. Gard. 80, 587–606 (1993).

    Article  Google Scholar 

  22. Hillis,D. M. Inferring complex phylogenies. Nature 383, 130–131 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Graybeal,A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998).

    Article  CAS  Google Scholar 

  24. Soltis,D. E. et al. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst. Biol. 47, 32–42 (1998).

    Article  CAS  Google Scholar 

  25. Qiu,Y.-L. & Palmer,J. D. Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci. 4, 26–30 (1999).

    Article  CAS  Google Scholar 

  26. Naylor,G. J. P. & Brown,W. M. Structural biology and phylogenetic estimation. Nature 388, 527–528 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Soltis,P. S., Soltis,D. E. & Chase,M. W. Angiosperm phylogeny inferred from multiple genes as a research tool for comparative biology. Nature 402 402–404 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Mathews,S. & Donoghue,M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999).

    Article  CAS  Google Scholar 

  29. Endress,P. K. & Igersheim,A. Gynoecium diversity and systematics of the Laurales. Bot. J. Linnean Soc. 125, 93–168 (1997).

    Article  Google Scholar 

  30. Swofford,D. L. PAUP*4.0b2: Phylogenetic Analysis Using Parsimony. (Sinauer, Sunderland, Massachusetts, 1998).

    Google Scholar 

  31. Parkinson,C. L., Adams,K. L. & Palmer,J. D. Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. (in the press).

Download references

Acknowledgements

We thank C. D. K. Cook, M. E. Endress, P. K. Endress, E. M. Friis, O. Nandi and R. Rutishauser for critical reading of the manuscript, R. Collett, A. Floyd, B. Hall and S. S. Renner for plant material, and the Swiss NF and US NSF for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Long Qiu.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, YL., Lee, J., Bernasconi-Quadroni, F. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–407 (1999). https://doi.org/10.1038/46536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/46536

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing