Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of the Earth's mantle in controlling the frequency of geomagnetic reversals

Abstract

A series of computer simulations of the Earth's dynamo illustrates how the thermal structure of the lowermost mantle might affect convection and magnetic-field generation in the fluid core. Eight different patterns of heat flux from the core to the mantle are imposed over the core–mantle boundary. Spontaneous magnetic dipole reversals and excursions occur in seven of these cases, although sometimes the field only reverses in the outer part of the core, and then quickly reverses back. The results suggest correlations among the frequency of reversals, the duration over which the reversals occur, the magnetic-field intensity and the secular variation. The case with uniform heat flux at the core–mantle boundary appears most ‘Earth-like’. This result suggests that variations in heat flux at the core–mantle boundary of the Earth are smaller than previously thought, possibly because seismic velocity anomalies in the lowermost mantle might have more of a compositional rather than thermal origin, or because of enhanced heat flux in the mantle's zones of ultra-low seismic velocity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamo simulations.
Figure 2: Progression of the magnetic field.

Similar content being viewed by others

References

  1. Merrill,R. T., McElhinny,M. W. & McFadden,P. L. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle (Academic, San Diego, 1996).

    Google Scholar 

  2. Lund,S. P. et al. Geomagnetic field excursions occurred often during the last million years. Eos 79, 178–179 (1998).

    ADS  Google Scholar 

  3. Cox,A. & Doell,R. R. Long period variations of the geomagnetic field. Bull. Seismol. Soc. Am. 54, 2243–2270 (1964).

    Google Scholar 

  4. Vogt,P. R. Changes in geomagnetic reversal frequency at times of tectonic change: evidence for coupling between core and upper mantle processes. Earth Planet. Sci. Lett. 25, 313–321 (1975).

    ADS  Google Scholar 

  5. Jones,G. M. Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field. J. Geophys. Res. 82, 1703–1709 (1977).

    ADS  Google Scholar 

  6. Loper,D. E. & McCartney,K. Mantle plumes and the periodicity of magnetic field reversals. Geophys. Res. Lett. 82, 1703–1709 (1977).

    Google Scholar 

  7. McFadden,P. L. & Merrill,R. T. Lower mantle convection and geomagnetism. J. Geophys. Res. 89, 3354–3362 (1984).

    ADS  Google Scholar 

  8. Glatzmaier,G. A. & Roberts,P. H. Simulating the geodynamo. Contemp. Phys. 38, 269–288 (1997).

    ADS  Google Scholar 

  9. Sarson,G. R. & Jones,C. A. A convection driven geodynamo reversal model. Phys. Earth Planet. Inter. 111, 3–20 (1999).

    ADS  Google Scholar 

  10. Hide,R. On the Earth's core-mantle interface. Q. J. R. Meteorol. Soc. 96, 579–590 (1970).

    ADS  Google Scholar 

  11. Goodacre,A. K. An intriguing empirical correlation between the Earth's magnetic field and plate motions. Phys. Earth Planet. Inter. 49, 3–5 (1987).

    ADS  Google Scholar 

  12. Bloxham,J. & Gubbins,D. Thermal core-mantle interactions. Nature 325, 511–513 (1987).

    ADS  Google Scholar 

  13. Laj,C., Mazaud,A., Weeks,R., Fuller,M. & Herrero-Bervera,E. Geomagnetic reversal paths. Nature 351, 447 (1991).

    ADS  Google Scholar 

  14. McFadden,P. L. & Merrill,R. T. Fundamental transitions in the geodynamo as suggested by paleomagnetic data. Phys. Earth Planet. Inter. 91, 253–260 (1995).

    ADS  Google Scholar 

  15. Gallet,Y. & Hulot,G. Stationary and nonstationary behavior within the geomagnetic polarity timescale. Geophys. Res. Lett. 24, 1875–1878 (1997).

    ADS  Google Scholar 

  16. Hart,J. E., Glatzmaier,G. A. & Toomre,J. Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173, 519–544 (1986).

    ADS  Google Scholar 

  17. Bolton,E. W. & Sayler,B. S. The influence of lateral variations of thermal boundary conditions on core convection: Numerical and laboratory experiments. Geophys. Astrophys. Fluid Dyn. 60, 369–370 (1991).

    Google Scholar 

  18. Zhang,K. & Gubbins,D. On convection in the earth's core driven by lateral temperature variations in the lower mantle. Geophys. J. Int. 108, 247–255 (1992).

    ADS  Google Scholar 

  19. Sun,Z.-P., Schubert,G. & Glatzmaier,G. A. Numerical simulations of thermal convection in a rapidly rotating spherical shell cooled inhomogeneously from above. Geophys. Astrophys. Fluid Dyn. 75, 199–226 (1994).

    ADS  Google Scholar 

  20. Olson,P. & Glatzmaier,G. A. Magnetoconvection and thermal coupling of the Earth's core and mantle. Phil. Trans. R. Soc. Lond. A 354, 1413–1424 (1996).

    ADS  Google Scholar 

  21. Sarson,G. R., Jones,C. A. & Longbottom,A. W. The influence of boundary region heterogeneities on the geodynamo. Phys. Earth Planet. Inter. 101, 13–32 (1997).

    ADS  Google Scholar 

  22. Glatzmaier,G. A. & Roberts,P. H. An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D 97, 81–94 (1996).

    ADS  Google Scholar 

  23. Glatzmaier,G. A. & Roberts,P. H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91, 63–75 (1995).

    ADS  Google Scholar 

  24. Glatzmaier,G. A. & Roberts,P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995).

    ADS  CAS  Google Scholar 

  25. Braginsky,S. I. & Roberts,P. H. Equations governing convection in Earth's core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995).

    ADS  Google Scholar 

  26. Kuang,W. & Bloxham,J. An Earth-like numerical dynamo model. Nature 389, 371–374 (1997).

    ADS  CAS  Google Scholar 

  27. Christensen,U., Olson,P. & Glatzmaier,G. A. A dynamo model interpretation of geomagnetic field structures. Geophys. Res. Lett. 25, 1565–1568 (1998).

    ADS  Google Scholar 

  28. Busse,F. H., Grote,E. & Tilgner,A. On convection driven dynamos in rotating spherical shells. Studia Geophys. Geodyn. 42, 1–6 (1998).

    Google Scholar 

  29. Sakuraba,A. & Kono,M. Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111, 105–121 (1999).

    ADS  Google Scholar 

  30. Juarez,M. T., Tauxe,L., Gee,J. S. & Pick,T. The intensity of the Earth's magnetic field over the past 160 million years. Nature 394, 878–881 (1998).

    ADS  CAS  Google Scholar 

  31. Su,W.-J., Woodward,R. L. & Dziewonski,A. N. Degree-12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res. 99, 6945–6980 (1994).

    ADS  Google Scholar 

  32. Tackley, P. J., Stevenson,D. J., Glatzmaier,G. A. & Schubert,G. Effects of multiple phase transitions in a 3-D spherical model of convection in the Earth's mantle. J. Geophys. Res. 99, 15,877–15,901 (1994).

    ADS  Google Scholar 

  33. Clement,B. M. & Kent,D. V. A southern hemisphere record of the Matuyama-Brunhes polarity reversal. Geophys. Res. Lett. 18, 81–84 (1991).

    ADS  Google Scholar 

  34. Hoffman,K. A. Dipolar reversal states of the geomagnetic field and core-mantle dynamics. Nature 359, 789–794 (1992).

    ADS  Google Scholar 

  35. McFadden,P. L., Barton,C. E. & Merrill,R. T. Do virtual geomagnetic poles follow preferred paths during geomagnetic reversals? Nature 361, 342–344 (1993).

    ADS  Google Scholar 

  36. Prevot,M. & Camps,P. Absence of preferred longitude sectors for poles from volcanic records of geomagnetic reversals. Nature 366, 53–57 (1993).

    ADS  Google Scholar 

  37. Quidelleur,X. & Valet,J.-P. Paleomagnetic records of excursions and reversals: Possible biases caused by magnetization artefacts. Phys. Earth Planet. Inter. 82, 27–48 (1994).

    ADS  Google Scholar 

  38. Christensen,U., Olson,P. & Glatzmaier,G. A. Numerical modeling of the geodynamo: A systematic parameter study. Geophys. J. Int. 138, 393–409 (1999).

    ADS  Google Scholar 

  39. Cox,A. The frequency of geomagnetic reversals and the symmetry of the non-dipole field. Rev. Geophys. Space Phys. 13, 35–51 (1975).

    ADS  Google Scholar 

  40. Merrill,R. T. & McElhinny,M. W. Anomalies in the time averaged magnetic field and their implications for the lower mantle. Rev. Geophys. Space Phys. 15, 309–323 (1977).

    ADS  Google Scholar 

  41. Quidelleur,X., Valet,J.-P., Courtillot,V. & Hulot,G. Long-term geometry of the geomagnetic field for the last 5 million years—an updated secular variation database. Geophys. Res. Lett. 21, 1639–1642 (1994).

    ADS  Google Scholar 

  42. Johnson,C. & Constable,C. The time-averaged field as recorded by lava flows over the past 5 Myr. Geophys. J. Int. 122, 489–519 (1995).

    ADS  Google Scholar 

  43. McElhinny,M. W., McFadden,P. L. & Merrill,R. T. The time-averaged field 0–5 Ma. J. Geophys. Res. 101, 25007–25027 (1996).

    ADS  Google Scholar 

  44. Cox,A. Lengths of geomagnetic polarity intervals. J. Geophys. Res. 73, 3249–3260 (1968).

    ADS  Google Scholar 

  45. Irving,E. & Pullaiah,G. Reversals of the geomagnetic field, magnetostratigraphy, and relative magnitude of secular variation in the Phanerozoic. Earth Sci. Rev. 12, 35–64 (1976).

    ADS  Google Scholar 

  46. Pal,P. C. & Roberts,P. H. Long-term polarity stability and strength of the geomagnetic dipole. Nature 331, 702–705 (1990).

    ADS  Google Scholar 

  47. Tauxe,L. & Hartl,P. 11 million years of Oligocene geomagnetic field behavior. Geophys. J. Int. 128, 217–229 (1997).

    ADS  Google Scholar 

  48. Olson,P. & Hagee,V. L. Geomagnetic polarity reversals, transition field structure, and convection in the outer core. J. Geophys. Res. 95, 4609–4620 (1990).

    ADS  Google Scholar 

  49. Garnero,E. J. & Helmberger,D. V. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophys. Res. Lett. 23, 977–980 (1996).

    ADS  Google Scholar 

  50. Lay,T., Williams,Q. & Garnero,E. J. The core-mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. T. Merrill for suggesting this numerical study. This work was supported by the Institute of Geophysics and Planetary Physics, the Los Alamos LDRD program, the University of California Research Partnership Initiatives program, the NSF Geophysics program and the NASA HPCC/ESS Grand Challenge program. Computing resources were provided by the Los Alamos Advanced Computing Laboratory, the San Diego Supercomputing Center, the Pittsburgh Supercomputing Center, the National Center for Supercomputing Applications, the Texas Advanced Computing Center, the Goddard Space Flight Center, and the Marshall Space Flight Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Glatzmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatzmaier, G., Coe, R., Hongre, L. et al. The role of the Earth's mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885–890 (1999). https://doi.org/10.1038/44776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44776

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing