Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A confirmed location in the Galactic halo for the high-velocity cloud ‘chain A’

Abstract

The high-velocity clouds of atomic hydrogen, discovered about 35 years ago1,2, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood3, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae4,5, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas—remnants of the era of galaxy formation2,6,7,8, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies7,8,9. Here we report a firm distance bracket for a large high-velocity cloud, chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 105 and 2×106 solar masses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Partial lightcurve of the RR Lyr star AD UMa, measured in yellow light.
Figure 3: Spectrum of AD UMa near the Ca IIK line (λ0 = 3,933.663 å), taken during maximum phase on 18 January 1997.
Figure 4: The predicted profile of the stellar Fe Iline (with λ0 = 3,930.299 å) compared with the observed spectrum.
Figure 2: H Iemission (top panel) and Ca IIabsorption measured towards AD UMa, which lies at 10 kpc distance, projected on HVC chain A.

Similar content being viewed by others

References

  1. Muller, C. A., Oort, J. H. & Raimond, E. C.R. Acad. Sci. Paris 257, 1661–1664 (1963).

    Google Scholar 

  2. Oort, J. H. Possible interpretations of the high-velocity clouds. Bull. Astron. Inst. Neth. 18, 421–438 (1966).

    ADS  Google Scholar 

  3. Wakker, B. P. & van Woerden, H. High-velocity clouds. Annu. Rev. Astron. Astrophys. 35, 217–266 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Bregman, J. N. The Galactic Fountain of high-velocity clouds. Astrophys. J. 236, 577–591 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Houck, J. C. & Bregman, J. N. Low-temperature galactic fountains. Astrophys. J. 352, 506–521 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Oort, J. H. The formation of galaxies and the origin of the high-velocity hydrogen clouds. Astron. Astrophys. 7, 381–404 (1970).

    ADS  Google Scholar 

  7. Blitz, L., Spergel, D. N., Teuben, P. J., Hartmann, L. & Burton, W. B. High-velocity clouds: Remnants of Local Group formation. Bull. Am. Astron. Soc. 28, 1349 (1996).

    Google Scholar 

  8. Blitz, L., Spergel, D. N., Teuben, P. J., Hartmann, L. & Burton, W. B. High-velocity clouds: Building blocks of the Local Group. Astrophys. J. 514, 818–843 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Kerr, F. J. & Sullivan, W. T. The high-velocity hydrogen clouds considered as satellites of the Galaxy. Astrophys. J. 158, 115–122 (1969).

    Article  ADS  Google Scholar 

  10. Verschuur, G. L. High-velocity neutral hydrogen. Annu. Rev. Astron. Astrophys. 13, 257–293 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Schwarz, U. J., Wakker, B. P. & van Woerden, H. Distance and metallicity limits of high-velocity clouds. Astron. Astrophys. 302, 364–381 (1995).

    ADS  CAS  Google Scholar 

  12. Danly, L., Albert, C. E. & Kuntz, K. D. Adetermination of the distance to the high-velocity cloud complex M. Astrophys. J. 416, L29–L31 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Ryans, R. S. I., Keenan, F. P., Sembach, K. R. & Davies, R. D. The distance to Complex M and the Intermediate Velocity Arch. Mon. Not. R. Astron. Soc. 289, 83–96 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Bates, B., Catney, M. G. & Keenan, F. P. High-velocity gas components towards 4 Lac. Mon. Not. R. Astron. Soc. 242, 267–270 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Stoppelenburg, P. S., Schwarz, U. J. & van Woerden, H. Westerbork HI observations of two high-velocity clouds. Astron. Astrophys. 338, 200–208 (1998).

    ADS  Google Scholar 

  16. Danly, L., Lockman, F. J., Meade, M. R. & Savage, B. D. Ultraviolet and radio observations of Milky Way halo gas. Astrophys. J. Suppl. Ser. 81, 125–161 (1992).

    Article  ADS  CAS  Google Scholar 

  17. de Boer, K. S. et al. The distance to the Complex C of high-velocity halo clouds. Astron. Astrophys. 286, 925–934 (1994).

    ADS  CAS  Google Scholar 

  18. Van Woerden, H., Peletier, R. F., Schwarz, U. J., Wakker, B. P. & Kalberla, P. M. W. in Stromlo Workshop on High-Velocity Clouds (eds Gibson, B. K. &Putman, M. E.) 1–25 (ASP Conf. Ser. 166, Astron. Soc. Pacif, San Francisco, (1999).

    Google Scholar 

  19. Tamanaha, C. M. Distance constraints to the AntiCenter high-velocity clouds. Astrophys. J. Suppl. Ser. 104, 81–100 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Wakker, B. P., van Woerden, H., de Boer, K. S. & Kalberla, P. M. W. Alower limit to the distance of HVC complex H. Astrophys. J. 493, 762–774 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Wakker, B. P. & van Woerden, H. Distribution and origin of high-velocity clouds. III. Clouds, complexes and populations. Astron. Astrophys. 250, 509–532 (1991).

    ADS  Google Scholar 

  22. Wakker, B. P. et al. The distance to two hydrogen clouds: the high-velocity complex A and the low-latitude intermediate-velocity arch. Astrophys. J. 473, 834–848 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Adelman, S. J., Fisher, W. A. & Hill, G. An atlas of the field horizontal branch stars HD 64488, HD 109995 and HD 161817 in the photographic region. Publ. Dominion Astrophys. Obs. Victoria 16, 203–280 (1987).

    ADS  Google Scholar 

  24. Wakker, B. P., Murphy, E. M., van Woerden, H. & Dame, T. M. Asensitive search for molecular gas in high-velocity clouds. Astrophys. J. 488, 216–223 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Tufte, S. L., Reynolds, R. J. & Haffner, L. M. WHAM observations of Hα emission from high-velocity clouds in the M, A, and C complexes. Astrophys. J. 504, 773–784 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Verschuur, G. L. An association between HI concentrations within high-velocity clouds A and C and nearby molecular clouds. Astrophys. J. 361, 497–510 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Meyerdierks, H. Acloud-Galaxy collision: observation and theory. Astron. Astrophys. 251, 269–275 (1991).

    ADS  CAS  Google Scholar 

  28. Verschuur, G. L. The high-velocity cloud complexes as extragalactic objects in the Local Group. Astrophys. J. 156, 771–777 (1969).

    Article  ADS  Google Scholar 

  29. Oort, J. H. in Problems of Physics and the Evolution of the Universe (ed. Mirzoyan, L.) 259–280 (Acad. Sci. of Armenian SSR, Yerevan, (1978).

    Google Scholar 

  30. Wakker, B. P. & Schwarz, U. J. Westerbork observations of high-velocity clouds. Discussion. Astron. Astrophys. 250, 484–498 (1991).

    ADS  CAS  Google Scholar 

  31. Benjamin, R. A. & Danly, L. High-velocity rain: The terminal velocity model of Galactic infall. Astrophys. J. 481, 764–774 (1997).

    Article  ADS  Google Scholar 

  32. Adelman, S. J. Elemental abundance analyses with coadded DAO spectrograms–IV. Revision of previous analyses. Mon. Not. R. Astron. Soc. 235, 749–762 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Chaboyer, B., Demarque, P., Kernan, P. J. & Krauss, L. M. The age of globular clusters in light of Hipparcos: resolving the age problem? Astrophys. J. 494, 96–110 (1998).

    Article  ADS  Google Scholar 

  34. Fernley, J. et al. The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions. Astron. Astrophys. 330, 515–520 (1998).

    ADS  Google Scholar 

  35. Lucke, P. B. The distribution of color excesses and interstellar reddening material in the solar neighborhood. Astron. Astrophys. 64, 367–372 (1978).

    ADS  Google Scholar 

  36. Hoffmeister, C. Neuer RR Lyrae-Stern S5218 Ursae Majoris. Astron. Nachrichten 284, 165–166 (1958).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The William Herschel Telescope (WHT) is operated by the Royal Greenwich Observatory, in the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, with financial support from PPARC (UK) and NWO (NL). We thank the NFRA La Palma Programme Committee, and in particular H. Henrichs, for their support for our programme. The Effelsberg Telescope belongs to the Max Planck Institute for Radio Astronomy in Bonn. B.P.W. was partly supported by NASA through STScI, which is operated by AURA, Inc, and also thanks B. Savage for financial support and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo van Woerden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Woerden, H., Schwarz, U., Peletier, R. et al. A confirmed location in the Galactic halo for the high-velocity cloud ‘chain A’. Nature 400, 138–141 (1999). https://doi.org/10.1038/22061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22061

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing