Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A reversibly antigen-responsive hydrogel

Abstract

Stimuli-responsive hydrogels that undergo abrupt changes in volume in response to external stimuli such as pH, temperature and solvent composition have potential applications in biomedicine and the creation of ‘intelligent’ materials systems, for example as media for drug delivery, separation processes and protein immobilization. Hydrogels have been reported that respond to pH1,2,3,, temperature4,5,6,7,8,9,10,11,12,13, electric fields14,15,16, saccharides17,18,19,20,21,22,. For some biomedical applications it would be very useful to have a material whose swelling response was dictated by a specific protein. Here we report such a material, which swells reversibly in a buffer solution in response to a specific antigen. The hydrogel was prepared by grafting the antigen and corresponding antibody to the polymer network, so that binding between the two introduces crosslinks in the network. Competitive binding of the free antigen triggers a change in gel volume owing to breaking of these non-covalent crosslinks. In addition, we show that the hydrogel displays shape-memory behaviour, and that stepwise changes in antigen concentration can induce pulsatile permeation of a protein through the network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for the preparation of an antigen-responsive hydrogel.
Figure 2: Effects of the free antigen concentration on the hydrogel swelling ratio.
Figure 3: Antigen recognition by the antigen–antibody semi-IPN hydrogel.
Figure 4: Reversible swelling changes and antigen-responsive permeation profiles.

Similar content being viewed by others

References

  1. Tanaka, T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40, 820–823 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Tanaka, T. et al. Phase transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Siegel, R. A. & Firestone, B. A. pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels. Macromolecules 21, 3254–3259 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Hirokawa, Y. & Tanaka, T. Volume phase transition in a nonionic gel. J. Chem. Phys. 81, 6379–6380 (1984).

    Article  ADS  Google Scholar 

  5. Hoffman, A. S. Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Controlled Release 6, 297–305 (1987).

    Article  CAS  Google Scholar 

  6. Bae, Y. H., Okano, T., Hsu, R. & Kim, S. W. Thermo-sensitive polymers as on-off switches for drug release. Makromol. Chem. Rapid Commun. 8, 481–485 (1987).

    Article  CAS  Google Scholar 

  7. Bae, Y. H., Okano, T. & Kim, S. W. Anew thermo-sensitive hydrogel: interpenetrating polymer networks from N-acryloylpyrrolidine and poly(oxyethylene). Makromol. Chem. Rapid Commun. 9, 185–189 (1988).

    Article  CAS  Google Scholar 

  8. Chen, G. & Hoffman, A. S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373, 49–52 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Yoshida, R. et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374, 240–242 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Miyata, T., Nakamae, K., Hoffman, A. S. & Kanzaki, Y. Stimuli-sensitivities of hydrogels containing phosphate groups. Macromol. Chem. Phys. 195, 1111–1120 (1994).

    Article  CAS  Google Scholar 

  11. Aoki, T. et al. Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N,N -dimethylacrylamide). Macromolecules 27, 947–952 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Stayton, P. S. et al. Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378, 472–474 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Feil, H., Bae, Y. H., Feijen, J. & Kim, S. W. Molecular separation by thermosensitive hydrogel membranes. J. Membrane Sci. 64, 283–294 (1991).

    Article  CAS  Google Scholar 

  14. Tanaka, T., Nishio, I., Sun, S.-T. & Ueno-Nishio, S. Collapse of gels in an electric field. Science 218, 467–469 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Kwon, I. C., Bae, Y. H. & Kim, S. W. Electrically erodible polymer gel for controlled release of drugs. Nature 354, 291–293 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Osada, Y., Okuzaki, H. & Hori, H. Apolymer gel with electrically driven motility. Nature 355, 242–244 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Kokufuta, E., Zhang, Y.-Q. & Tanaka, T. Saccharide-sensitive phase transition of a lectin-loaded gel. Nature 351, 302–304 (1991).

    Article  ADS  Google Scholar 

  18. Miyata, T., Jikihara, A., Nakamae, K. & Hoffman, A. S. Preparation of poly(glucosyloxyethyl methacrylate)-concanavalin A complex hydrogel and its glucose-sensitivity. Macromol. Chem. Phys. 197, 1135–1146 (1996).

    Article  CAS  Google Scholar 

  19. Lee, S. J. & Park, K. Synthesis and characterization of sol-gel phase-reversible hydrogels sensitive to glucose. J. Mol. Recogn. 9, 549–557 (1996).

    Article  Google Scholar 

  20. Obidat, A. A. & Park, K. Characterization of glucose dependent gel-sol phase transition of polymeric glucose-concanavalin A hydrogel system. Pharm. Res. 13, 989–995 (1996).

    Article  Google Scholar 

  21. Obidat, A. A. & Park, K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18, 801–806 (1997).

    Article  Google Scholar 

  22. Kataoka, K. et al. Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 120, 12694–12695 (1998).

    Article  CAS  Google Scholar 

  23. Shoemaker, S. G., Hoffman, A. S. & Priest, J. H. Synthesis and properties of vinyl monomer/enzyme conjugates. Appl. Biochem. Biotech. 15, 11–24 (1987).

    Article  CAS  Google Scholar 

  24. Natsume, T. et al. Interactions between collagen-binding stress protein HSP47 and collagen. J. Biol. Chem. 269, 31224–31228 (1994).

    CAS  PubMed  Google Scholar 

  25. Murai, N., Taguchi, H. & Yoshida, M. Kinetic analysis of interactions between GroEL and reduced α-lactalbumin. J. Biol. Chem. 270, 19957–19963 (1995).

    Article  CAS  Google Scholar 

  26. Flory, P. J. Principles of Polymer Chemistry(Cornell Univ. Press, New York, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Miyata.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, T., Asami, N. & Uragami, T. A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999). https://doi.org/10.1038/21619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21619

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing