Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The inevitable youthfulness of known high-redshift radio galaxies

Abstract

Some galaxies are very luminous in the radio part of the spectrum. These ‘radio galaxies’ have extensive (hundreds of kiloparsecs) lobes of emission powered by plasma jets originating at a central black hole1. Some radio galaxies can be seen at very high redshifts2, where in principle they can serve as probes of the early evolution of the Universe. Here we show that, for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models3), all observable high-redshift radio galaxies must be seen when the lobes are less than 107 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result explains many observed trends of radio-galaxy properties with redshift4,5,6,7,8,9, without needing to invoke explanations based on cosmology10 or strong evolution of the surrounding intergalactic medium with cosmic time6, thereby avoiding conflict with current theories of structure formation11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Luminosity of radio sources at a rest-frame frequency of 151 MHz versus linear size.
Figure 2: Tracks generated according to the same model as Fig. 1b, with parameters as in Fig. 1a.

Similar content being viewed by others

References

  1. Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255–351 (1984).

    Article  ADS  Google Scholar 

  2. Rawlings, S.et al. Aradio galaxy at redshift 4.41. Nature 383, 502–505 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Baldwin, J. E. in Extragalactic Radio Sources 21–24 (Proc. 97 IAU Symp., Reidel, Dordrecht, (1982).

    Google Scholar 

  4. McCarthy, P. J., van Breugel, W., Spinrad, H. & Djorgovski, S. Acorrelation between the radio and optical morphologies of distant 3CR radio galaxies. Astrophys. J. 321, L29– L33 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Kapahi, V. K., Subrahmanya, C. R. Kulkarni, V. K. On the interpretation of the observed angular-size-flux-density relation for extra-galactic radio sources. J. Astrophys. Astron. 8, 33–50 (1987 ).

    Article  ADS  Google Scholar 

  6. Barthel, P. D. & Miley, G. K. Evolution of radio structure in quasars: a new probe of protogalaxies? Nature 333, 319–325 (1988).

    Article  ADS  Google Scholar 

  7. Blundell, K. M., Rawlings, S. & Willott, C. J. The nature and evolution of classical double radio sources from complete samples. Astron. J. 117, 677–706 (1999).

    Article  ADS  Google Scholar 

  8. Garrington, S. T. & Conway, R. G. The interpretation of asymmetric depolarization in extragalactic radio sources. Mon. Not. R. Astron. Soc. 250, 198–208 (1991).

    Article  ADS  Google Scholar 

  9. Hughes, D. H., Dunlop, J. S., Archibald, E. N., Rawlings, S. & Eales, S. A. Cosmological evolution of the submillimetre luminosity of high-redshift radio galaxies.In The Birth of Galaxies (ed. Guiderdoni, B.) (Frontieres, Paris, in the press).

  10. Daly, R. A. Cosmology with powerful extended radio sources. Astrophys. J. 426, 38–50 (1994).

    Article  ADS  Google Scholar 

  11. Eke, V. R., Cole, S. & Frenk, C. S. Cluster evolution as a diagnostic for Ω. Mon. Not. R. Astron. Soc. 282, 263– 280 (1996).

    Article  ADS  Google Scholar 

  12. Reynolds, C. S. & Fabian, A. C. ROSAT PSPC observations of Cygnus A: X-ray spectra of the cooling flow and hotspots. Mon. Not. R. Astron. Soc. 278, 479–487 (1996).

    Article  ADS  Google Scholar 

  13. Neumann, D. M. 3C 295, a cluster and its cooling flow at z = 0.46. Astrophys. J. 520 (in the press); preprint astro-ph/9902035 at 〈 http://xxx.lanl.gov〉 (1999).

  14. Navarro, J. F., Frenk, C. S. & White, S. D. M. Auniversal density profile from hierarchical clustering. Astrophys. J. 490, 493– 508 (1997).

    Article  ADS  Google Scholar 

  15. Crawford, C. S. & Fabian, A. C. ROSAT observations of distant 3CR radio galaxies—II. Mon. Not. R. Astron. Soc. 282, 1483–1488 ( 1996).

    Article  ADS  CAS  Google Scholar 

  16. Bower, R. G. & Smail, I. Aweak lensing survey in the fields of z 1 luminous radio sources. Mon. Not. R. Astron. Soc. 290, 292–302 ( 1997).

    Article  ADS  Google Scholar 

  17. Deltorn, J. M., Le Fevre, O., Crampton, D. & Dickinson, M. Amassive cluster of galaxies at z = 0.996. Astrophys. J. 483, L21–L24 ( 1997).

    Article  ADS  Google Scholar 

  18. Hill, G. J. & Lilly, S. J. Achange in the cluster environments of radio galaxies with cosmic epoch. Astrophys. J. 367, 1–18 (1991).

    Article  ADS  Google Scholar 

  19. Falle, S. A. E. G. Self-similar jets. Mon. Not. R. Astron. Soc. 250, 581–596 (1991).

    Article  ADS  Google Scholar 

  20. Kaiser, C. R., Dennett-Thorpe, J. & Alexander, P. Evolutionary tracks of FRII sources through the P–D diagram. Mon. Not. R. Astron. Soc. 292, 723–732 (1997).

    Article  ADS  Google Scholar 

  21. Riley, J. M. Bright sources selected at 151 MHz—I. Some observations and identifications. Mon. Not. R. Astron. Soc. 238, 1055– 1075 (1989).

    Article  ADS  Google Scholar 

  22. Sanders, D. B.et al . Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74– 91 (1988).

    Article  ADS  CAS  Google Scholar 

  23. De Young, D. S. The ‘alignment effect’ and the evolution of dust in high-redshift radio galaxie. Astrophys. J. 507, 161– 172 (1998).

    Article  ADS  Google Scholar 

  24. Best, P. N., Longair, M. S. & Röttgering, H. J. A. Evolution of the aligned structures in z 1 radio galaxies. Mon. Not. R. Astron. 280, L9–L12 (1996).

    Article  ADS  Google Scholar 

  25. Genzel, R., Lutz, D. & Tacconi, L. Star formation triggered by galaxy collisions. Nature 395, 859–862 ( 1998).

    Article  ADS  CAS  Google Scholar 

  26. Longair, M. S. On the interpretation of radio source counts. Mon. Not. R. Astron. Soc. 133, 421–436 ( 1966).

    Article  ADS  Google Scholar 

  27. Aarseth, S. J. & Fall, S. M. Cosmological N -body simulations of galaxy merging. Astrophys. J. 236, 43–57 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  28. Ellingson, E., Green, R. F. & Yee, H. K. C. Clusters of galaxies associated with quasars II: galaxy cluster dynamics. Astrophys. J. 378, 476–486 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Prestage, R. M. & Peacock, J. A. The cluster environments of powerful radio galaxies. Mon. Not. R. Astron. Soc. 230, 131–160 ( 1988).

    Article  ADS  Google Scholar 

  30. Owen, F. N., Ledlow, M. J., Morrison, G. E. & Hill, J. M. The Cluster of galaxies surrounding Cygnus A. Astrophys. J. 488, L15–L18 (1997).

    Article  ADS  Google Scholar 

  31. Markevitch, M., Sarazin, C. L. & Vikhlinin, A. Physics of merging clusters Cygnus A, A3667 and A2065. Astrophys. J. 521 (in the press); preprint astro-ph/9812005 at 〈http://xxx.lanl.gov〉 (1998).

  32. Laing, R. A., Riley, J. M. & Longair, M. S. Bright radio sources at 178 MHz: flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon. Not. R. Astron. Soc. 204, 151– 187 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.M.B. thanks the Royal Commission for the Exhibition of 1851 for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine M. Blundell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blundell, K., Rawlings, S. The inevitable youthfulness of known high-redshift radio galaxies. Nature 399, 330–332 (1999). https://doi.org/10.1038/20612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20612

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing