Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of importin-β bound to the IBB domain of importin-α

Abstract

Cytosolic proteins bearing a classical nuclear localization signal enter the nucleus bound to a heterodimer of importin-α and importin-β (also called karyopherin-α and -β). The formation of this heterodimer involves the importin-β-binding (IBB) domain of importin-α, a highly basic amino-terminal region of roughly 40 amino-acid residues. Here we report the crystal structure of human importin-β bound to the IBB domain of importin-α, determined at 2.5 Å and 2.3 Å resolution in two crystal forms. Importin-β consists of 19 tandemly repeated HEAT motifs and wraps intimately around the IBB domain. The association involves two separate regions of importin-β, recognizing structurally distinct parts of the IBB domain: an amino-terminal extended moiety and a carboxy-terminal helix. The structure indicates that significant conformational changes occur when importin-β binds or releases the IBB domain domain and suggests how dissociation of the importin-α/β heterodimer may be achieved upon nuclear entry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of importin-β bound to the IBB domain of importin-α.
Figure 2: Primary and secondary structures of importin-β and the IBB domain.
Figure 3: Recognition of the IBB domain by importin-β.
Figure 4: Comparison of the complex in two crystal forms.
Figure 5: A comparison of importins α and β.

Similar content being viewed by others

References

  1. Görlich, D. & Mattaj, I. W. Nucleocytoplasmic transport. Science 271, 1513– 1518 (1996).

    Article  ADS  Google Scholar 

  2. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265 –306 (1998).

    Article  CAS  Google Scholar 

  3. Weis, K. Importins and exportins: how to get in and out of the nucleus. Trends Biochem. Sci. 23, 185–189 ( 1998).

    Article  CAS  Google Scholar 

  4. Doye, V. & Hurt, E. From nucleoporins to nuclear pore complexes. Curr. Opin. Cell Biol. 9, 401– 411 (1997).

    Article  CAS  Google Scholar 

  5. Ohno, M., Fornerod, M. & Mattaj, I. W. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92, 327–336 (1998).

    Article  CAS  Google Scholar 

  6. Dingwall, C. & Laskey, R. A. Nuclear targeting sequences: a consensus? Trends Biochem. Sci. 16, 178– 181 (1991).

    Article  Google Scholar 

  7. Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E. Ashort amino acid sequence able to specify nuclear location. Cell 39, 499–509 ( 1984).

    Article  CAS  Google Scholar 

  8. Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).

    Article  CAS  Google Scholar 

  9. Görlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear import. Cell 79, 767–778 ( 1994).

    Article  Google Scholar 

  10. Weis, K., Mattaj, I. W. & Lamond, A. I. Identification of hSRP1α as a functional receptor for nuclear localization sequences. Science 268, 1049–1053 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Moroianu, J., Blobel, G. & Radu, A. Previously identified protein of uncertain function is karyopherin α and together with karyopherin β docks import substrate at nuclear pore complex. Proc. Natl Acad. Sci. USA 92, 2008–2011 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Görlich, D. et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol. 5, 383–392 ( 1995).

    Article  Google Scholar 

  13. Chi, N. C., Adam, E. J. H. & Adam, S. A. Sequence and characterization of cytoplasmic nuclear import factor p97. J. Cell Biol. 130, 265 –274 (1995).

    Article  CAS  Google Scholar 

  14. Imamoto, N. et al. The nuclear pore-targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett. 368 , 415–419 (1995).

    Article  CAS  Google Scholar 

  15. Radu, A., Blobel, G. & Moore, M. S. Identification of a protein complex that is required for nuclear import and mediates docking of import substrates to distinct nucleoporins. Proc. Natl Acad. Sci. USA 92, 1769– 1773 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Görlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16, 6535–6547 ( 1997).

    Article  CAS  Google Scholar 

  17. Bischoff, F. R. & Görlich, D. RanBP1 is crucial for the release of RanGTP from importin β-related nuclear transport factors. FEBS Lett. 419, 249– 254 (1997).

    Article  CAS  Google Scholar 

  18. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 ( 1998).

    Article  CAS  Google Scholar 

  19. Görlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. A41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).

    Article  Google Scholar 

  20. Weis, K., Ryder, U. & Lamond, A. I. The conserved amino-terminal domain of hSRP1α is essential for nuclear import. EMBO J. 15, 1818–1825 (1996).

    Article  CAS  Google Scholar 

  21. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct. Biol. 6, 388–397 ( 1999).

    Article  CAS  Google Scholar 

  22. Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Görlich, D. Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16, 1153– 1163 (1997).

    Article  CAS  Google Scholar 

  23. Chi, N. C. & Adam, S. A. Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore. Mol. Biol. Cell 8, 945– 956 (1997).

    Article  CAS  Google Scholar 

  24. Chi, N. C., Adam, E. J. H. & Adam, S. A. Different binding domains for Ran-GTP and Ran-GDP/RanBP1 on nuclear import factor p97. J. Biol. Chem. 272, 6818–6822 (1997).

    Article  CAS  Google Scholar 

  25. Görlich, D. et al. Anovel class of RanGTP binding proteins. J. Cell Biol. 138, 65–80 ( 1997).

    Article  Google Scholar 

  26. Andrade, M. A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nature Genet. 11, 115–116 (1995).

    Article  CAS  Google Scholar 

  27. Groves, M. R., Hanlon, N., Turowski, P., Hemmings, B. A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 ( 1999).

    Article  CAS  Google Scholar 

  28. Palacios, I., Hetzer, M., Adam, S. A. & Mattaj, I. W. Nuclear import of U snRNPs requires importin β. EMBO J. 16, 6783–6792 (1997).

    Article  CAS  Google Scholar 

  29. Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114–4126 (1998).

    Article  CAS  Google Scholar 

  30. Jäkel, S. & Görlich, D. Importin β, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17, 4491– 4502 (1998).

    Article  Google Scholar 

  31. Moore, J. D., Yang, J. Y., Truant, R. & Kornbluth, S. Nuclear import of Cdk/cyclin complexes: Identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell Biol. 144, 213–224 (1999).

    Article  CAS  Google Scholar 

  32. Truant, R. & Cullen, B. R. The arginine-rich domains present in human immunodeficiency virus type I Tat and Rev function as direct importin β-dependent nuclear localization signals. Mol. Cell. Biol. 19, 1210–1217 (1999).

    Article  CAS  Google Scholar 

  33. Palmeri, D. & Malim, M. H. Importin β can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin α. Mol. Cell. Biol. 19, 1218–1225 (1999).

    Article  CAS  Google Scholar 

  34. Malik, H. S., Eickbush, T. H. & Goldfarb, D. S. Evolutionary specialization of the nuclear targeting apparatus. Proc. Natl Acad. Sci. USA 97, 13738–13742 (1997).

    Article  ADS  Google Scholar 

  35. Esnouf, R. M. et al. Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration. Acta Crystallogr. D 54, 938–953 ( 1998).

    Article  CAS  Google Scholar 

  36. Hayward, S. & Berendsen, H. J. C. Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins 30, 144– 154 (1996).

    Article  Google Scholar 

  37. Pollard, V. W. et al. Anovel receptor-mediated nuclear protein import pathway. Cell 86, 985–994 ( 1996).

    Article  CAS  Google Scholar 

  38. Kutay, U. et al. Identification of a tRNA specific nuclear export receptor. Mol. Cell 1, 359–369 ( 1998).

    Article  CAS  Google Scholar 

  39. Arts, G.-J., Fornerod, M. & Mattaj, I. W. Identification of a nuclear export receptor for tRNA. Curr. Biol. 8, 305–314 (1998).

    Article  CAS  Google Scholar 

  40. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).

    Article  ADS  CAS  Google Scholar 

  41. Vetter, I. R., Nowak, C., Nishimoto, T., Kühlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexes with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 ( 1999).

    Article  ADS  CAS  Google Scholar 

  42. Battiste, J. L. et al. α-Helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex. Science 273, 1547 –1551 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  44. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–776 ( 1994).

    Article  Google Scholar 

  45. Terwillinger, T. C., Kim, S.-H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A 43, 1–5 (1987).

    Article  Google Scholar 

  46. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173– 208 (1997).

    Article  CAS  Google Scholar 

  47. Brünger, A. T. et al. Crystallography and NMR system: A new software for macromolecular structure determination. Acta Crystallogr. C 54, 905–921 (1998).

    Google Scholar 

  48. Kraulis, P. E. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  49. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insight from the interfacial and thermodynamic properties of hydrocarbon. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  50. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958 –961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Moulin for excellent technical assistance; R. W. Frank at the Zentrum für Molekulare Biologie, Universität Heidelberg for peptide synthesis; members of the EMBL/ESRF Joint Structural Biology Group, in particular G. Leonard and A. Thompson for access and support at beamline BM14, W.Burmeister at beamline ID14-3 and J. Lescar and B. Rasmussen at beamline ID02; and D.Barford for providing us with the coordinates of the PR65/A subunit of PP2A before release. We acknowledge our use of the HKL package as part of a collaboration with Z. Otwinowski and W. Minor, supported by the NIH. C.P. was supported by an EMBO fellowship and by a Marie Curie (TMR) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph W. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cingolani, G., Petosa, C., Weis, K. et al. Structure of importin-β bound to the IBB domain of importin-α . Nature 399, 221–229 (1999). https://doi.org/10.1038/20367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20367

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing