Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dusty pinwheel nebula around the massive star WR104

Abstract

Wolf-Rayet (WR) stars are luminous, massive blue stars thought to be the immediate precursors to some supernovae. The existence of dust shells around such stars has been enigmatic since their discovery about 30 years ago, as the intense ultraviolet radiation from the star should be inimical to dust survival1. Although dust creation models, including those involving interacting stellar winds2, have been put forward to explain these dust shells, the high-resolution observations needed to distinguish between the models have hitherto been lacking. Here we present images of the dust outflow around WR104, obtained using a technique that allows us to resolve detail on scales of about 40 auat the distance of the star. Our images—taken at two epochs—show that the dust forms a spatially confined stream that follows precisely a linear (or archimedian) spiral trajectory with a rotation period of 220 ± 30 days. These results prove that, in this case, a binary companion is responsible for the creation of the circumstellar dust. Moreover, the spiral plume makes WR104 the prototype of a new class of circumstellar nebulae, which are unique to systems with interacting winds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of WR104.
Figure 2: Schematic diagram of the WR104 binary system.

Similar content being viewed by others

References

  1. Williams, P. M., van der Hucht, K. A. & Thé, P. S. Infrared photometry of late-type Wolf-Rayet stars. Astron. Astrophys. 182, 91–106 (1987).

    ADS  CAS  Google Scholar 

  2. Usov, V. V. Stellar wind collision and dust formation in long-period, heavily interacting Wolf-Rayet binaries. Mon. Not. R. Astron. Soc. 252, 49–52 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Haniff, C. A. & Buscher, D. F. Diffraction-limited imaging with partially redundant masks–I. Infrared imaging of bright objects. J. Opt. Soc. Am. A 9, 203–218 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Tuthill, P. G., Monnier, J. D., Danchi, W. C. & Haniff, C. A. Michelson Interferometry with Keck I. Proc SPIE 3350, 839–846 (1998).

    Article  ADS  Google Scholar 

  5. Allen, D. A., Barton, J. R. & Wallace, P. T. The size of a Wolf-Rayet star's dust-shell measured by speckle interferometry. Mon. Not. R. Astron. Soc. 196, 797–800 (1981).

    Article  ADS  Google Scholar 

  6. Dyck, H. M., Simon, T. & Wolstencroft, R. D. The infrared dust shell around the WC9 star Ve 2-45. Astrophys. J. 277, 675–677 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Williams, P. M. Formation of dust in hostile environments—what we learn from observing Wolf-Rayet stars. Astrophys. Space Sci. 251, 321–331 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Williams, P. M. & van der Hucht, K. A. in Wolf-Rayet Stars in the Framework of Stellar Evolution(eds Vreux, J.-M. et al.) 353–359 (Proc. 33rd Liège Int. Astrophys. Colloq, Univ. Liège, (1996).

    Google Scholar 

  9. Crowther, P. A. Remarkable spectral variability in WR104: dust condensation in a hostile environment? Mon. Not. R. Astron. Soc. 290, L59–L63 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Moffat, A. F., Niemela, V. S. & Marraco, H. G. Wolf-Rayet stars in the magellanic clouds. VI. Spectroscopic orbits of WC binaries and implications for WR evolution. Astrophys. J. 348, 232–241 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Zubko, V. G. On the physical model of dust around Wolf-Rayet stars. Mon. Not. R. Astron. Soc. 295, 109–118 (1998).

    ADS  CAS  Google Scholar 

  12. Howarth, I. D. & Schmutz, W. Near-infrared spectroscopy of Galactic Wolf-Rayet stars. Astron. Astrophys. 261, 503–522 (1992).

    ADS  CAS  Google Scholar 

  13. Rochowicz, K. & Nidezielski, A. Terminal velocities of Wolf-Rayet star winds from low resolution IUE spectra. Acta Astron. 45, 307–318 (1995).

    ADS  Google Scholar 

  14. Torres, A. V., Conti, P. S. & Massey, P. Spectroscopic studies of Wolf-Rayet stars III. The WC subclass. Astrophys. J. 300, 379–395 (1986).

    Article  ADS  Google Scholar 

  15. Lundstrom, I. & Stenholm, B. Wolf-Rayet stars in open clusters and associations. Astron. Astrophys. Suppl. 58, 163–192 (1984).

    ADS  Google Scholar 

  16. van der Hucht, K. A. et al. ISO SWS spectrophotometry of galactic Wolf-Rayet stars: preliminary results. Astron. Astrophys. 315, L193–L196 (1996).

    ADS  Google Scholar 

  17. Veen, P. M. et al. WR121 obscured by a dust cloud: the key to understanding occasional “eclipses” of “dusty” Wolf-Rayet WC stars? Astron. Astrophys. 329, 199–212 (1998).

    ADS  Google Scholar 

  18. Cassinelli, J. P., Ignace, R. & Bjorkman, J. E. in Wolf-Rayet Stars: Binaries, Colliding Winds, Evolution(eds van der Hucht, K. A. & Williams, P. R.) 191–202 (IAU Symp. No. 163, Kluwer, Dordrecht, (1995).

    Book  Google Scholar 

  19. Cohen, M., Barlow, M. J. & Kuhi, L. V. Wolf-Rayet stars. VI—The nature of the optical and infrared continua. Astron. Astrophys. 40, 291–302 (1975).

    ADS  Google Scholar 

  20. Walder, R. in Wolf-Rayet Stars: Binaries, Colliding Winds, Evolution(eds van der Hucht, K. A. & Williams, P. R.) 420–424 (IAU Symp. No. 163, Kluwer, Dordrecht, (1995).

    Book  Google Scholar 

  21. Gull, S. F. & Skilling, J. Maximum entropy method in image processing. IEEE Proc. F 131(6), 646–650 (1984).

    MATH  Google Scholar 

  22. Sivia, D. S. Phase Extension Methods. Thesis, Cambridge Univ.((1987).

    Google Scholar 

Download references

Acknowledgements

Data herein were obtained at the W.M. Keck Observatory, made possible by the support of the W.M. Keck Foundation, and operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. This work was supported by the NSF. We thank D. Sivia for the maximum-entropy mapping program “VLBMEM”, and D. Hale for sparking our interest in Wolf-Rayet stars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Tuthill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuthill, P., Monnier, J. & Danchi, W. A dusty pinwheel nebula around the massive star WR104. Nature 398, 487–489 (1999). https://doi.org/10.1038/19033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19033

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing