Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Local inhibition and long-range enhancement of Dpp signal transduction by Sog

Abstract

Extracellular gradients of signalling molecules can specify different thresholds of gene activity in development. A gradient of Decapentaplegic (Dpp) activity subdivides the dorsal ectoderm of the Drosophila embryo into amnioserosa and dorsal epidermis1,2. The proteins Short gastrulation3 (Sog) and Tolloid4 (Tld) are required to shape this gradient. Sog has been proposed to form an inhibitory complex with either Dpp5 or the related ligand Screw6,7, and is subsequently processed by the protease Tld5. Paradoxically, Sog appears to be required for amnioserosa formation8, which is specified by peak Dpp signalling activity1,2. Here we show that the misexpression of sog using the even-skipped stripe-2 enhancer9 redistributes Dpp signalling in a mutant background in which dpp is expressed throughout the embryo. Dpp activity is diminished near the Sog stripe and peak Dpp signalling is detected far from this stripe. However, a tethered form of Sog suppresses local Dpp activity without augmenting Dpp activity at a distance, indicating that diffusion of Sog may be required for enhanced Dpp activity and consequent amnioserosa formation. The long-distance stimulation of Dpp activity by Sog requires Tld, whereas Sog-mediated inhibition of Dpp does not. The heterologous Dpp inhibitor Noggin10 inhibits Dpp signalling but fails to augment Dpp activity. These results suggest an unusual strategy for generating a gradient threshold of growth-factor activity, whereby Sog and its protease specify peak Dpp signalling far from a localized source of Sog.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of the stripe-2-sog transgene in wild-type and sog embryos.
Figure 4: A tethered form of Sog does not mediate long-range enhancement of Race expression.
Figure 2: The stripe-2–sog transgene induces Race expression in gd mutants.
Figure 3: Altering the dose of dpp changes the Dpp/Screw signalling pattern.
Figure 5: Uncoupling sog -mediated enhancement and inhibition of Dpp signalling.

Similar content being viewed by others

References

  1. Ferguson, E. L. & Anderson, K. V. decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71, 451–461 (1992).

    Article  CAS  Google Scholar 

  2. Wharton, K. A., Ray, R. P. & Gelbart, W. M. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–822 (1993).

    CAS  PubMed  Google Scholar 

  3. François, V., Solloway, M., O'Neill, J. W., Emery, J. & Bier, E. Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev. 8, 2602–2616 (1994).

    Article  Google Scholar 

  4. Shimell, M. J., Ferguson, E.. L., Childs, S. R. & O'Connor, M. B. The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell 67, 469–481 (1991).

    Article  CAS  Google Scholar 

  5. Marques, G. et al. Production of a Dpp activity gradient in the early Drosophila embryo through the opposing actions of the Sog and Tld proteins. Cell 91, 417–426 (1997).

    Article  CAS  Google Scholar 

  6. Neul, J. L. & Ferguson, E. L. Spatially restricted activation of the Sax receptor by Scw modulates Dpp/Tkv signalling in Drosophila dorsal-ventral patterning. Cell 95, 483–494 (1998).

    Article  CAS  Google Scholar 

  7. Nguyen, M., Park, S., Marques, G. & Arora, K. Interpretation of a BMP activity gradient in Drosophila embryos depends on synergistic signalling by two type I receptors, Sax and Tkv. Cell 95, 495–506 (1998).

    Article  CAS  Google Scholar 

  8. Zusman, S. B., Sweeton, D. & Wieschaus, E. F. short gastrulation, a mutation causing delays in stage specific cell shape changes during gastrulation in Drosophila melanogaster. Dev. Biol. 129, 417–427 (1988).

    Article  CAS  Google Scholar 

  9. Kosman, D. & Small, S. Concentration-dependent patterning by an ectopic expression domain of the Drosophila gap gene knirps. Development 124, 1343–1354 (1997).

    CAS  PubMed  Google Scholar 

  10. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalising factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).

    Article  CAS  Google Scholar 

  11. Jiang, J., Kosman, D., Ip, Y. T. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–1891 (1991).

    Article  CAS  Google Scholar 

  12. Tatei, K., Cai, H., Ip, Y. T. & Levine, M. Race: a Drosophila homologue of the angiotensin converting enzyme. Mech. Dev. 51, 157–168 (1995).

    Article  CAS  Google Scholar 

  13. Rusch, J. & Levine, M. Regulation of a dpp target gene in the Drosophila embryo. Development 124, 303–311 (1997).

    CAS  PubMed  Google Scholar 

  14. Arora, K., Levine, M. S. & O'Connor, M. B. The screw gene encodes a ubiquitously expressed member of the TGF-β family required for specification of dorsal cell fates in the Drosophila embryo. Genes Dev. 8, 2588–2601 (1994).

    Article  CAS  Google Scholar 

  15. Konrad, K. D., Goralski, T. J., Mahowald, A. P. & Marsh, J. L. The gastrulation-defective gene of Drosophila melanogaster is a member of the serine protease superfamily. Proc. Natl Acad. Sci. USA 95, 6819–6824 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Roth, S., Stein, D. & Nusslein-Volhard, C. Agradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189–1202 (1989).

    Article  CAS  Google Scholar 

  17. Rusch, J. & Levine, M. Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. Curr. Opin. Genet. Dev. 6, 416–423 (1996).

    Article  CAS  Google Scholar 

  18. Piccolo, S. et al. Cleavage of chordin by xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91, 407–416 (1997).

    Article  CAS  Google Scholar 

  19. Holley, S. A. et al. The Xenopus dorsalizing factor noggin ventralises Drosophila embryos by preventing Dpp from activating its receptor. Cell 86, 607–617 (1996).

    Article  CAS  Google Scholar 

  20. Lewis, J., Slack, J. M. & Wolpert, L. Thresholds in development. J. Theor. Biol. 65, 579–590 (1977).

    Article  CAS  Google Scholar 

  21. McDowell, N., Zorn, A. M., Crease, D. J. & Gurdon, J. B. Activin has direct long-range signalling activity and can form a concentration gradient by diffusion. Curr. Biol. 7, 671–681 (1997).

    Article  CAS  Google Scholar 

  22. Jones, C. M., Armes, N. & Smith, J. C. Signalling by TGF-beta family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr. Biol. 6, 1468–1475 (1996).

    Article  CAS  Google Scholar 

  23. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  24. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Ferguson, E. L. & Anderson, K. V. Localized enhancement and repression of the activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral pattern formation in the Drosophila embryo. Development 114, 583–597 (1992).

    CAS  PubMed  Google Scholar 

  26. Holley, S. A. et al. Aconserved system for dorsal-ventral patterning in insects and vertebrates involving Sog and chordin. Nature 376, 249–253 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Rubin, G. & Spradling, A. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Tautz, D. & Pfeifle, C. Anon-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals a translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Harland for the noggin cDNA and suggesting the stripe-2–noggin experiment; and G. Struhl, R. Harland, Mark Ashe and members of the Levine laboratory for helpful discussions and encouragement. This work was funded by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashe, H., Levine, M. Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature 398, 427–431 (1999). https://doi.org/10.1038/18892

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18892

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing