Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction

Abstract

Fundamental processes on the molecular level, such as vibrations and rotations in single molecules, liquids or crystal lattices and the breaking and formation of chemical bonds, occur on timescales of femtoseconds to picoseconds. The electronic changes associated with such processes can be monitored in a time-resolved manner by ultrafast optical spectroscopic techniques1, but the accompanying structural rearrangements have proved more difficult to observe. Time-resolved X-ray diffraction has the potential to probe fast, atomic-scale motions2,3,4,5. This is made possible by the generation of ultrashort X-ray pulses6,7,8,9,10, and several X-ray studies of fast dynamics have been reported6,7,8,11,12,13,14,15. Here we report the direct observation of coherent acoustic phonon propagation in crystalline gallium arsenide using a non-thermal, ultrafast-laser-driven plasma — a high-brightness, laboratory-scale source of subpicosecond X-ray pulses16,17,18,19. We are able to follow a 100-ps coherent acoustic pulse, generated through optical excitation of the crystal surface, as it propagates through the X-ray penetration depth. The time-resolved diffraction data are in excellent agreement with theoretical predictions for coherent phonon excitation20 in solids, demonstrating that it is possible to obtain quantitative information on atomic motions in bulk media during picosecond-scale lattice dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the table-top ultrafast X-ray diffractometer.
Figure 2: Experimentally measured (a), theoretically calculated (b), and iteratively inverted (c) time- and angle-resolved diffraction curves for optically excited GaAs.
Figure 3: Theoretically calculated percentage lattice expansion, or strain, within the GaAs crystal as a function of depth and pump–probe time delay.

Similar content being viewed by others

References

  1. Elsaesser, T., Fujimoto, J. G., Wiersma, D. A. & Zinth, W. (eds) Ultrafast Phenomena XI(Springer, Berlin, (1998).

    Book  Google Scholar 

  2. Rentzepis, P. M. & Helliwell, J. R. (eds) Time-Resolved Diffraction(Oxford Univ. Press, (1997).

    Google Scholar 

  3. Bergsma, J. P. et al. Transient x-ray scattering calculated from molecular dynamics. J. Chem. Phys. 84, 6151–6160 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Wark, J. Time-resolved x-ray diffraction. Contemp. Phys. 37, 205–218 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Ben-Nun, M., Cao, J. S. & Wilson, K. R. Ultrafast x-ray and electron diffraction: Theoretical considerations. J. Phys. Chem. A 101, 8743–8761 (1997).

    Article  CAS  Google Scholar 

  6. Larson, B. C., Tischler, J. Z. & Mills, D. M. Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation. J. Mater. Res. 1, 144–154 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Srajer, V. et al. Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274, 1726–1729 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Chen, P., Tomov, I. V. & Rentzepis, P. M. Time resolved heat propagation in gold crystals by means of picosecond x-ray diffraction. J. Chem. Phys. 104, 10001–10007 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Schoenlein, R. W. et al. Femtosecond x-ray pulses at 0.4 Å generated by 90 degree Thomson scattering: a tool for probing the structural dynamics of materials. Science 274, 236–238 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Murnane, M. M., Kapteyn, H. C., Rosen, M. D. & Falcone, R. W. Ultrafast x-ray pulses from laser-produced pulses. Science 251, 531–536 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Chin, A. H. et al. in Ultrafast Phenomena XI(eds Elsaesser, T., Fujimoto, J. G., Wiersma, D. A. & Zinth, W.) 401–403 (Springer, Berlin, (1998).

    Book  Google Scholar 

  13. Buschert, J. R., Tischler, J. Z., Mills, D. M., Zhao, Q. & Corella, R. Time-resolved x-ray diffraction study of laser annealing in silicon at grazing-incidence. J. Appl. Phys. 66, 3523–3525 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Wark, J. S., Riley, D., Woolsey, N. C., Keihn, G. & Whitlock, R. R. Direct measurement of compressive and tensile strain during shock breakout by use of subnanosecond x-ray diffraction. J. Appl. Phys. 68, 4531–4534 (1990).

    Article  ADS  Google Scholar 

  15. Larsson, J. et al. Ultrafast structural changes measured by time-resolved x-ray diffraction. Appl. Phys. A 66, 587–591 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Kieffer, J. -C. et al. Ultrafast x-ray sources. Phys. Fluids B 5, 2676–2681 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Rousse, A. et al. Efficient K alpha x-ray source from femtosecond laser-produced plasmas. Phys. Rev. E 50, 2200–2207 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Kmetec, J. D. et al. MeV x-ray generation with a femtosecond laser. Phys. Rev. Lett. 68, 1527–1530 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Gallant, P. et al. Subpicosecond time-resolved x-ray spectroscopy of plasmas produced by high intensity ultrashort laser pulses. Proc. SPIE 3157, 44–51 (1997).

    Article  ADS  Google Scholar 

  20. Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Blakemore, J. S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1981).

    Article  ADS  Google Scholar 

  22. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures(Springer, Berlin, (1996).

    Book  Google Scholar 

  23. Shank, C. V., Yen, R. & Hirlimann, C. Femtosecond-time-resolved surface structural dynamics of optically excited silicon. Phys. Rev. Lett. 51, 900–902 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Saeta, P., Wang, J. -K., Siegal, Y., Bloembergen, N. & Mazur, E. Ultrafast electronic disordering during the femtosecond laser melting of GaAs. Phys. Rev. Lett. 67, 1023–1026 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Downer, M. C. & Shank, C. V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses. Phys. Rev. Lett. 56, 761–764 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Strauss, U. & Ruhle, W. W. Auger recombination in intrinsic GaAs. Appl. Phys. Lett. 62, 55–57 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Takagi, S. Adynamical theory of diffraction for a distorted crystal. J. Phys. Soc. Jpn 26, 1239–1253 (1969).

    Article  ADS  CAS  Google Scholar 

  28. Taupin, D. Théorie dynamique de la diffraction des rayon X par les cristaux déformés. Bull. Soc. Fr. Minér. Crist. 87, 469–511 (1964).

    CAS  Google Scholar 

  29. Larson, B. C., White, C. W., Noggle, T. S., Barhost, J. F. & Mills, D. M. Time-resolved x-ray diffraction measurement of the temperature and temperature gradients in silicon during pulsed laser annealing. Appl. Phys. Lett. 42, 282–284 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Barty, C. P. J. et al. Generation of 18-fs, multiterawatt pulses using regenerative pulse shaping and chirped pulse amplification. Opt. Lett. 21, 668–670 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent R. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose-Petruck, C., Jimenez, R., Guo, T. et al. Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310–312 (1999). https://doi.org/10.1038/18631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18631

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing