Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus

Abstract

The bmi-1 gene was first isolated as an oncogene that cooperates with c-myc in the generation of mouse lymphomas1,2. We subsequently identified Bmi-1 as a transcriptional repressor belonging to the mouse Polycomb group3,4,5,6. The Polycomb group comprises an important, conserved set of proteins that are required to maintain stable repression of specific target genes, such as homeobox-cluster genes, during development7,8,9. In mice, the absence of bmi-1 expression results in neurological defects and severe proliferative defects in lymphoid cells, whereas bmi-1 overexpression induces lymphomas4,10. Here we show that bmi-1-deficient primary mouse embryonic fibroblasts are impaired in progression into the S phase of the cell cycle and undergo premature senescence. In these fibroblasts and in bmi-1-deficient lymphocytes, the expression of the tumour suppressors p16 and p19Arf, which are encoded by ink4a, is raised markedly. Conversely, overexpression of bmi-1 allows fibroblast immortalization, downregulates expression of p16 and p19Arf and, in combination with H-ras, leads to neoplastic transformation. Removal of ink4a dramatically reduces the lymphoid and neurological defects seen in bmi-1-deficient mice, indicating that ink4a is a critical in vivo target for Bmi-1. Our results connect transcriptional repression by Polycomb-group proteins with cell-cycle control and senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired proliferation of bmi-1−/− MEFs is rescued by wild-type but not mutant bmi-1.
Figure 2: Effects of absence or overexpression of bmi-1 on cell-cycle-regulatory proteins in primary fibroblasts.
Figure 3: p15, p16 and p19Arf mRNA levels in bmi-1+/+, bmi-1−/− and bmi-1+/− MEFs and in mel-18+/+ and mel-18 −/− MEFs.
Figure 4: p15, p16 and p19Arf mRNA levels in bmi-1+/+ and bmi-1−/− splenocytes and control or bmi-1-virus-infected MEFs, and cooperation between Ras and Bmi-1 in neoplastic transformation.
Figure 5: Rescue of bmi-1−/−-associated proliferative defects in bmi-1−/− ink4a−/− mice and MEFs.

Similar content being viewed by others

References

  1. van Lohuizen, M. et al. Identification of cooperating oncogenes in Eµ-myc transgenic mice by provirus tagging. Cell 65, 735– 752 (1991).

    Article  Google Scholar 

  2. Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P. & Adams, J. M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eµ-myc transgenic mice. Cell 65, 753– 763 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. van Lohuizen, M., Frasch, M., Wientjens, E. & Berns, A. Sequence similarity between the mammalian Bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature 353, 353–355 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. van der Lugt, N. M. T. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the Bmi-1 proto-oncogene. Genes Dev. 8, 757– 769 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Alkema, M. J. et al. MPc2, a new murine homologue of the Drosophila Polycomb protein is a member of the mouse Polycomb transcriptional repressor complex. J. Mol. Biol. 273, 993– 1003 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Alkema, M. J., van der Lugt, N. M. T., Bobeldijk, R. C., Berns, A. & van Lohuizen, M. Transformation of axial skeleton due to overexpression of Bmi-1 in transgenic mice. Nature 374, 724–727 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Paro, R. Propagating memory of transcriptional states. Trends Genet. 11, 295–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. van Lohuizen, M. Functional analysis of mouse Polycomb-group genes. Cell. Mol. Life Sci. 54, 71–79 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  9. Gould, A. Functions of mammalian Polycomb group and trithorax group related genes. Curr. Opin. Genet. Dev. 7, 488–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Alkema, M. J., Jacobs, H., van Lohuizen, M. & Berns, A. Perturbation of B and T cell development and predisposition to lymphomagenesis in Eµ-Bmi1 transgenic mice require the Bmi1 RING finger. Oncogene 15, 899–910 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  11. Dimri, G. P. et al. Abiomarker that identifies senescent human cells in culture and aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hara, E. et al. Regulation of p16 CDKN2 expression and its implications for cell immortalisation and senescence. Mol. Cell. Biol. 16 , 859–867 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16ink4a tumour suppressor versus other ink4 family members during development and aging. Oncogene 15, 203–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16ink4a. Cell 88, 593–602 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  16. Haber, D. A. Splicing into senescence: the curious case of p16 and p19Arf. Cell 91, 555–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Kamijo, T. et al. Tumour suppression at the mouse ink4a locus mediated by the alternative reading frame product p19Arf. Cell 91, 649–659 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  18. Strutt, H., Cavalli, G. & Paro, R. Colocalisation of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J. 12, 3621–3632 (1997).

    Article  Google Scholar 

  19. Cavalli, G. & Paro, R. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93, 505–518 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  20. Pirotta, V. PcG complexes and chromatin silencing. Curr. Opin. Genet. Dev. 7, 249–258 ( 1997).

    Article  Google Scholar 

  21. Alkema, M. J. et al. Identification of Bmi1-interacting proteins as constituents of a multimeric mammalian Polycomb complex. Genes Dev. 11, 226–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Gunster, M. J. et al. Identification and characterisation of interactions between the vertebrate Polycomb-group protein BMI1 and the human homologues of Polyhomeotic. Mol. Cell. Biol. 17, 2326– 2335 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akasaka, T. et al. Arole for mel-18, a Polycomb group-related vertebrate gene, during the anteroposterior specification of the axial skeleton. Development 122, 1513–1522 (1996).

    CAS  PubMed  Google Scholar 

  24. Serrano, M. et al. Role of the ink4a locus in tumour suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Zindy, F. et al. Myc signalling via the ARF tumour suppressor regulates p53-dependent apoptosis and immortalisation. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Stanchina, E. et al. E1A signalling to p53 involves the p19ARF tumour suppressor. Genes Dev. 12, 2434– 2442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blyth, K. et al. Synergy between a human c-myc transgene and p53 null genotype in murine thymic lymphomas: contrasting effects of homozygous and heterozygous p53 loss. Oncogene 10, 1717– 1723 (1995).

    CAS  PubMed  Google Scholar 

  28. Bodrug, S. E. et al. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 13, 2124–2130 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient Rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039– 1048 (1997).

    CAS  PubMed  Google Scholar 

  30. Hall, M. & Peters, G. Genetic alterations of cyclins, cyclin-dependent kinases and cdk inhibitors in human cancer. Adv. Cancer Res. 68, 67–108 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Peters for p16 and p15 cDNA plasmids; H. Koseki and J. Deschamps for mel-18−/− embryos; T. Ide for the TiG-3 cells; J. Sedivy for c-myc−/− TGR-1 cells; S. Lowe, B. Amati, C. Sherr, M. Ewen, D. Peeper and R. Bernards for gifts of recombinant retroviral vectors; G. Nolan for providing phoenix eco- and amphotropic packaging cell lines and LZRS-IRES-EGFP retroviral vectors; N. van der Lugt for constructing the LZRS-bmi-1-IRES-EGFP retrovirus; E. de Pauw for telomere FISH analysis; and R. Bernards, A. Berns and W. Voncken for critically reading the manuscript J.J.L.J. and K.K. were supported by a grant of the Dutch Cancer Society (K.W.F.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van Lohuizen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J., Kieboom, K., Marino, S. et al. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999). https://doi.org/10.1038/16476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16476

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing